Search results for "Photolysis"
showing 10 items of 81 documents
Polar organic marker compounds in PM2.5 aerosol from a mixed forest site in western Germany
2008
The molecular composition of PM2.5 (particulate matter with an aerodynamic diameter2.5 microm) aerosol samples collected during a very warm and dry 2003 summer period at a mixed forest site in Jülich, Germany, was determined by gas chromatography/mass spectrometry in an effort to evaluate photooxidation products of biogenic volatile organic compounds (BVOCs) and other markers for aerosol source characterization. Six major classes of compounds represented by twenty-four individual organic species were identified and measured, comprising tracers for biomass combustion, short-chain acids, fatty acids, sugars/sugar alcohols, and tracers for the photooxidation of isoprene and alpha-/beta-pinene.…
Degradation half-life times of PCDDs, PCDFs and PCBs for environmental fate modeling.
2000
Literature search of the knowledge on the degradation of persistent organic pollutants (POPs) in environmental compartments air, water, soil and sediment was done in purpose to find properties of POPs of interest for modeling. One degradation process, hydrolysis (chemical degradation), was omitted as negligibly slow for POPs studied. The other two, photolysis and biodegradation processes, were considered separately in purpose to develop estimation procedures. The estimates can be given as pseudo first-order rate constants kP for photolysis and kB for biodegradation. For each compartment, an overall degradation rate is k(tot) = kP + kB and lifetime t(1/2) = ln 2/k(tot). The latter values, li…
Simulated solar UV-irradiation of endocrine disrupting chemical octylphenol.
2009
The photolysis of octylphenol (OP) was investigated using a solar simulator in the absence/presence of dissolved natural organic matter (DNOM), HCO(3)(-), NO(3)(-) and Fe(III) ions. The effects of different parameters such as initial pH, initial concentration of substrate, temperature, and the effect of hydrogen peroxide concentration on photodegradation of octylphenol in aqueous solution have been assessed. The results indicate that the oxidation rate increases in the presence of H(2)O(2), nitrate and DNOM. Phenol, 1,4-dihydroxylbenzene and 1,4-benzoquinone were identified as intermediate products of photodegradation of octylphenol, through an HPLC method. In addition, the disappearance of…
The photophysics and photochemistry of cofacial free base and metallated bisporphyrins held together by covalent architectures
2007
Abstract This review focuses on the photophysical properties of bisporphyrin systems held in a face-to-face configuration by covalent bonds via flexible or rigid spacers and metal–metal bonds. The cofacial arrangement induces intramolecular bismacrocycle interactions promoting basic photophysical events such as excitonic interactions and energy and electron transfers. These events are relevant to mimic light harvesting and reactor devices known for photosynthesis in plants, and can be monitored by luminescence and flash photolysis methods.
Self-cleaning antimicrobial surfaces by bio-enabled growth of SnO2 coatings on glass.
2013
Conventional vapor-deposition techniques for coatings require sophisticated equipment and/or high-temperature resistant substrates. Therefore bio-inspired techniques for the fabrication of inorganic coatings have been developed in recent years. Inspired by the biology behind the formation of the intricate skeletons of diatoms orchestrated by a class of cationic polyamines (silaffins) we have used surface-bound spermine, a naturally occurring polyamine, to promote the fast deposition of homogeneous, thin and transparent biomimetic SnO2 coatings on glass surfaces. The bio-enabled SnO2 film is highly photoactive, i.e. it generates superoxide radicals (O2˙(-)) upon sunlight exposure resulting i…
High Yield Ultrafast Intramolecular Singlet Exciton Fission in a Quinoidal Bithiophene
2015
We report the process of singlet exciton fission with high-yield upon photoexcitation of a quinoidal thiophene molecule. Efficient ultrafast triplet photogeneration and its yield are determined by photoinduced triplet-triplet absorption, flash photolysis triplet lifetime measurements, as well as by femtosecond time-resolved transient absorption and fluorescence methods. These experiments show that optically excited quinoidal bithiophene molecule undergoes ultrafast formation of the triplet-like state with the lifetime ∼57 μs. CASPT2 and RAS-SF calculations have been performed to support the experimental findings. To date, high singlet fission rates have been reported for crystalline and pol…
Estimation of the emission temperature of an electrodeless discharge lamp and determination of the oscillator strength for the I(2P3/2) 183.038 nm re…
2001
Abstract The 183.038 nm resonance absorption transition of I( 2 P 3/2 ) has been studied using a flash photolysis set-up for gas-phase chemistry and a radio frequency powered electrodeless discharge lamp filled with iodine. The dependence of self-absorption and self-reversal on iodine partial pressure in the discharge volume was measured. The optimum iodine partial pressure, with self-absorption minimized and acceptable intensity, is determined to be approximately 2.5×10 −3 mbar. A method is described to estimate the temperature of the emitting atoms using direct measurements of relative absorption at different absorber concentrations. This yields an emission temperature of 923±50 K. Using …
Ligation Tunes Protein Reactivity in an Ancient Haemoglobin: Kinetic Evidence for an Allosteric Mechanism in Methanosarcina acetivorans Protoglobin
2012
Abstract: Protoglobin from Methanosarcina acetivorans (MaPgb) is a dimeric globin with peculiar structural properties such as a completely buried haem and two orthogonal tunnels connecting the distal cavity to the solvent. CO binding to and dissociation from MaPgb occur through a biphasic kinetics. We show that the heterogenous kinetics arises from binding to (and dissociation from) two tertiary conformations in ligation-dependent equilibrium. Ligation favours the species with high binding rate (and low dissociation rate). The equilibrium is shifted towards the species with low binding (and high dissociation) rates for the unliganded molecules. A quantitative model is proposed to describe t…
Diffusion and Reactions of Hydrogen inF2-Laser-IrradiatedSiO2Glass
2002
The diffusion and reactions of hydrogenous species generated by single-pulsed F2 laser photolysis of SiO-H bond in SiO2 glass were studied in situ between 10 and 330 K. Experimental evidence indicates that atomic hydrogen (H0) becomes mobile even at temperatures as low as approximately 30 K. A sizable number of H0 dimerize by a diffusion-limited reaction into molecular hydrogen (H2) that may migrate above approximately 200 K. Activation energies for the diffusion, inherently scattered due to the structural disorder in glass, are separated into three bands centered at approximately 0.1 eV for free H0, approximately 0.2 eV presumably for shallow-trapped H0, and approximately 0.4 eV for H2.