Search results for "Photopolymer"

showing 10 items of 33 documents

Material transport and organizing phenomena of Langmuir—Blodgett membranes from polymerizable built up diacetylene amphiphiles on hydrophobic supports

1986

Abstract Langmuir—Blodgett multilayers of polymerized diin amphiphiles on different porous, hydrophobic ultrafilters have been studied as composite membranes under the conditions of reverse osmosis. Influences of differently structured surfaces of the supports on structure and phase change occurring during polymerization have been investigated by scanning electron microscopy and X-ray diffraction and are discussed with reverse osmosis data. When conditioned, fine porous hydrophobic supports become permeable to aqueous solutions at low pressures. Under these conditions permeate flux and retention were found to depend on the number of layers deposited.

Materials scienceDiacetyleneScanning electron microscopetechnology industry and agricultureFiltration and SeparationBiochemistryLangmuir–Blodgett filmchemistry.chemical_compoundMembranePhotopolymerchemistryPolymerizationChemical engineeringPolymer chemistryAmphiphileGeneral Materials SciencePhysical and Theoretical ChemistryReverse osmosisJournal of Membrane Science
researchProduct

Electrochemical Fabrication and Physicochemical Characterization of Metal/High-k Insulating Oxide/Polymer/Electrolyte Junctions

2014

Photoelectrochemical polymerization of poly(3,4-ethylenedioxythiophene), PEDOT, was successfully realized on anodic film grown to 50 V on magnetron sputtered Ti-6 atom % Si alloys. Scanning electron microscopy allowed us to evidence formation of compact and uniform polymer layers on the oxide surface. Photoelectrochemical and impedance measurements showed that photopolymerization allows one to grow PEDOT in its conducting state, while a strong cathodic polarization is necessary to bring the polymer in its p-type semiconducting state. Information on the optical and electrical properties of metal/oxide/polymer/electrolyte junctions proves that PEDOT has promising performance as an electrolyte…

Materials scienceFabricationElectrochemical fabricationInorganic chemistryImpedance measurementOxidePhysico-chemical characterizationPoly-3 4-ethylenedioxythiopheneElectrolyteElectrochemistrySettore ING-INF/01 - ElettronicaPhotoelectrochemistrychemistry.chemical_compoundPEDOT:PSSPhysical and Theoretical ChemistryConducting statechemistry.chemical_classificationPhotopolymerizationCathodic polarizationPolymerSilicon alloySurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsOptical and electrical propertieSettore ING-IND/23 - Chimica Fisica ApplicataGeneral EnergychemistryPolymerizationCavity magnetronLithium IntercalationTitanium alloyScanning electron microscopyThe Journal of Physical Chemistry C
researchProduct

Quantitative analysis of localized surface plasmons based on molecular probing

2010

International audience; We report on the quantitative characterization of the plasmonic optical near-field of a single silver nanoparticle. Our approach relies on nanoscale molecular molding of the confined electromagnetic field by photoactivated molecules. We were able to directly image the dipolar profile of the near-field distribution with a resolution better than 10 nm and to quantify the near-field depth and its enhancement factor. A single nanoparticle spectral signature was also assessed. This quantitative characterization constitutes a prerequisite for developing nanophotonic applications.

Materials scienceNanophotonicsGeneral Physics and AstronomyNanoparticlePhysics::OpticsNanotechnologynanoscale photopolymerization02 engineering and technology010402 general chemistry01 natural sciencesSilver nanoparticlenear-field opticsGeneral Materials Sciencemolecular probesPlasmonComputingMilieux_MISCELLANEOUSSpectral signaturelocalized surface plasmonquantitative analysisNear-field opticsGeneral Engineering[CHIM.MATE]Chemical Sciences/Material chemistry021001 nanoscience & nanotechnology0104 chemical sciencesCharacterization (materials science)[ CHIM.POLY ] Chemical Sciences/Polymers[CHIM.POLY]Chemical Sciences/Polymers[ CHIM.MATE ] Chemical Sciences/Material chemistry[SPI.OPTI]Engineering Sciences [physics]/Optics / Photonic0210 nano-technologyLocalized surface plasmon
researchProduct

Influence of a Crosslinker Containing an Azo Group on the Actuation Properties of a Photoactuating LCE System

2016

Photoactuating liquid crystalline elastomers (LCE) are promising candidates for an application as artificial muscles in microdevices. In this work, we demonstrate that by optimizing (1) the illumination conditions and (2) the mixture of azo monomer and azo crosslinker, thick films of an all-azo LCE can be prepared, which show a strong length change without bending during photoactuation. This becomes possible by working with white light (about 440 nm), whose absorption is low, leading to a large penetration depth. By adding an azo crosslinker to a previously prepared system, several improvements of the actuation properties—like a stronger photoactuation at lower operational temperatures—coul…

Materials sciencePolymers and Plasticsvis photo polymerizationazo02 engineering and technology010402 general chemistryElastomer01 natural sciencesArticleIsothermal processlcsh:QD241-441chemistry.chemical_compoundlcsh:Organic chemistryPolymer chemistryphotoactuationliquid crystalline elastomersIrradiationPenetration depthAbsorption (electromagnetic radiation)crosslinkerlight-responsiveactuatorpolymer filmGeneral Chemistry021001 nanoscience & nanotechnology0104 chemical sciencesliquid crystalline networkPhotopolymerMonomerChemical engineeringchemistryliquid crystalline elastomers; photoactuation; polymer film; light-responsive; azo; crosslinker; actuator; vis photo polymerization; liquid crystalline networkArtificial muscle0210 nano-technologyPolymers
researchProduct

Influence of different thermopolymerization methods on composite resin microhardness

2020

Background Additional heat polymerization in composite resins allows greater effective­ness of microhardness, flexural strength, fracture tough­ness, wear resistance, and increased color stability. Material and Methods 150 composite resin specimens were made using a 4 mm diameter and 2 mm thick bipartite steel matrix. Five resins composed of different compositions were tested (Brilliant Everglow/Coltene, Filtek One BulkFill/3M, Filtek P60/3M, Filtek Z350XT/3M, Filtek Z250XT/3M), and for each of them three types of polymerization were tested: light curing only (n=50); photopolymerization + autoclave thermopolymerization (n=50) and photopolymerization + microwave thermopolymerization (n=50). …

Materials scienceResearchComposite number030206 dentistry02 engineering and technology021001 nanoscience & nanotechnology:CIENCIAS MÉDICAS [UNESCO]Indentation hardnessOperative Dentistry and EndodonticsAutoclaveLight curingWear resistance03 medical and health sciences0302 clinical medicinePhotopolymerFlexural strengthPolymerizationUNESCO::CIENCIAS MÉDICASComposite material0210 nano-technologyGeneral Dentistry
researchProduct

Two-Color Single Hybrid Plasmonic Nanoemitters with Real Time Switchable Dominant Emission Wavelength

2015

International audience; We demonstrate two-color nanoemitters that enable the selection of the dominant emitting wavelength by varying the polarization of excitation light. The nanoemitters were fabricated via surface plasmon-triggered two-photon polymerization. By using two polymerizable solutions with different quantum dots, emitters of different colors can be positioned selectively in different orientations in the close vicinity of the metal nanoparticles. The dominant emission wavelength of the metal/polymer anisotropic hybrid nanoemitter thus can be selected by altering the incident polarization.

Materials sciencebusiness.industryMechanical EngineeringSurface plasmonsurface plasmonsNanophotonicsPhysics::OpticsBioengineeringGeneral Chemistryhybrid nanostructuresfluorescence spectroscopyCondensed Matter PhysicsPolarization (waves)WavelengthOpticsQuantum dotphotopolymerization[SPI.OPTI]Engineering Sciences [physics]/Optics / PhotonicnanophotonicsGeneral Materials SciencebusinessAnisotropynanoemitterPlasmonExcitation
researchProduct

Zirconium oxocluster/polymer hybrid nanoparticles prepared by photoactivated miniemulsion copolymerization

2017

The photoactivated free radical miniemulsion copolymerization of methyl methacrylate (MMA) and the zirconium oxocluster Zr4O2(methacrylate) 12 is used as an effective and fast preparation method for polymer/inorganic hybrid nanoparticles. The oxoclusters, covalently anchored to the polymer network, act as metal-organic cross-linkers, thus improving the thermomechanical properties of the resulting hybrid nanoparticles. Benzoin carbonyl organic compounds were used as photoinitiators. The obtained materials are compared in terms of cross-linking, effectiveness of cluster incorporation, and size distribution with the analogous nanoparticles produced by using conventional thermally induced free …

Materials scienceminiemulsionNanoparticleBioengineering02 engineering and technology010402 general chemistryMethacrylate01 natural scienceschemistry.chemical_compoundhybrid; miniemulsion; nanoparticle; oxocluster; photopolymerization; Bioengineering; Chemistry (all); Materials Science (all); Mechanics of Materials; Mechanical Engineering; Electrical and Electronic EngineeringBenzoinPolymer chemistryCopolymeroxoclusterGeneral Materials ScienceElectrical and Electronic EngineeringMethyl methacrylatechemistry.chemical_classificationhybridnanoparticleMechanical EngineeringChemistry (all)General ChemistryPolymer021001 nanoscience & nanotechnology0104 chemical sciencesMiniemulsionPolymerizationchemistryMechanics of MaterialsphotopolymerizationMaterials Science (all)0210 nano-technologyNanotechnology
researchProduct

Ce:YAG nanoparticles embedded in a PMMA matrix: preparation and characterization

2010

A Ce:YAG-poly(methyl methacrylate) composite was prepared using in situ polymerization by embedding the Ce:YAG nanopowder in a blend of methyl methacrylate (MMA) and 2-methacrylic acid (MAA) monomers and activating the photopolymerization using a radical initiator. The obtained nanocomposite was yellow and transparent. Its characterization was performed using transmission electron microscopy, small angle X-ray scattering, (13)C cross-polarization magic-angle spinning nuclear magnetic resonance, and photoluminescence spectroscopy. Results showed that Ce:YAG nanoparticles are well dispersed in the polymeric matrix whose structure is organized in a lamellar shape. The luminescence properties o…

NanocompositeMaterials scienceNanoparticleSurfaces and InterfacesCe:YAG nanopowders PMMA transparent polymeric composite white LEDs.Condensed Matter Physicschemistry.chemical_compoundPhotopolymerchemistryPolymerizationMethacrylic acidChemical engineeringPolymer chemistryElectrochemistryGeneral Materials ScienceMethyl methacrylateIn situ polymerizationLuminescenceSpectroscopy
researchProduct

1983

PhotopolymerChemistryActivation energyPhotochemistryUltraviolet radiationDie Makromolekulare Chemie, Rapid Communications
researchProduct

Synthesis of low density foam shells for inertial confinement fusion experiments

2011

This work deals with the fabrication process of low density foam shells and the sharp control of their shape (diameter, thickness, density, sphericity, non-concentricity). During this PhD we focused on the non-concentricity criterion which has to be lower than 1%. The shells are synthesized using a microencapsulation process leading to a double emulsion and followed by a thermal polymerization at 60°C. According to the literature, three major parameters, the density of the three phases, the deformations of the shells along the process and the kinetics of the polymerization have a direct influence on the shells non-concentricity. The results obtained showed that when the density gap between …

PhotopolymerizationNon-concentricityDensityEmulsion double[ PHYS.COND.CM-GEN ] Physics [physics]/Condensed Matter [cond-mat]/Other [cond-mat.other]DispersionMicroballonDouble emulsionTrimethylolpropane trimethacrylate[CHIM.OTHE] Chemical Sciences/OtherRadical polymerizationPolymerisation radicalaire[ CHIM.OTHE ] Chemical Sciences/OtherShellNon-concentricitéDensité[CHIM.OTHE]Chemical Sciences/OtherMicroencapsulationPhotopolymérisation
researchProduct