Search results for "Phthalocyanine"
showing 10 items of 124 documents
Phthalocyanine–titanate nanotubes: a promising nanocarrier detectable by optical imaging in the so-called imaging window
2014
International audience; TiONts-phthalocyanine nanohybrids combining an efficient optical probe and a promising nanovector have been developed in a step-by-step approach and were thoroughly characterized. Each 150 nm long TiONts-Pc bear ca. 450 Pc. Three nanohybrids were prepared including three different linkers in quest for the best stability.
From the solution processing of hydrophilic molecules to polymer-phthalocyanine hybrid materials for ammonia sensing in high humidity atmospheres.
2014
We have prepared different hybrid polymer-phthalocyanine materials by solution processing, starting from two sulfonated phthalocyanines, s-CoPc and CuTsPc, and polyvinylpyrrolidone (PVP), polyethylene glycol (PEG), poly(acrylic acid-co-acrylamide) (PAA-AM), poly(diallyldimethylammonium chloride) (PDDA) and polyaniline (PANI) as polymers. We also studied the response to ammonia (NH3) of resistors prepared from these sensing materials. The solvent casted films, prepared from s-CoPc and PVP, PEG and PAA-AM, were highly insulating and very sensitive to the relative humidity (RH) variation. The incorporation of s-CoPc in PDDA by means of layer-by-layer (LBL) technique allowed to stabilize the fi…
Organic Heterojunction Devices Based on Phthalocyanines: A New Approach to Gas Chemosensing.
2020
Organic heterostructures have emerged as highly promising transducers to realize high performance gas sensors. The key reason for such a huge interest in these devices is the associated organic heterojunction effect in which opposite free charges are accumulated at the interface making it highly conducting, which can be exploited in producing highly sensitive and faster response kinetics gas sensors. Metal phthalocyanines (MPc) have been extensively studied to fabricate organic heterostructures because of the large possibilities of structural engineering which are correlated with their bulk thin film properties. Accordingly, in this review, we have performed a comprehensive literature surve…
Metallophthalocyanines as optical active dopants in borate glass
2021
Abstract B2O3 – phthalocyanine composites (B2O3@MPc) were synthesized at 410 °C by sintering boron trioxide doped with base metal-free phthalocyanine (H2Pc) and/or its complexes of Mg, Zn, Gd (Pc = C32H16N8, phthalocyanine ligand, M = metal ion). The glassy products were characterized by scanning electron microscopy (SEM, EDS) and diffuse reflectance spectroscopy (DRS) which confirmed the incorporation of the respective phthalocyanines into the amorphous borate matrix. FTIR results suggested a possible impact of the phthalocyanine dopants on the final solid structure of the glassy matrix. The UV-excited composites emitted a pronounced blue phosphorescence featured by a two-step quenching pr…
Electronic functionality of Gd-bisphthalocyanine: Charge carrier concentration, charge mobility, and influence of local magnetic field
2018
Abstract Gadolinium bisphthalocyanine (GdPc2) has been placed among the highest ranked molecular materials considered namely for modern optoelectronic applications including organic solar cells. To improve understanding of the correlation between GdPc2 magnetic properties and its electronic functionality, we experimentally and theoretically studied charge carrier concentration, charge mobility, and influence of local magnetic field on charge carrier transport. For better clearance, all the main studied properties of GdPc2 bisphthalocyanine were compared with Zn phthalocyanine (ZnPc) as a reference material. Conductivity and charge carrier mobility were measured in materials incorporated in …
Semiconductor @ sensitizer composites for enhanced photoinduced processes
2021
Abstract This Chapter provides an overview of common procedures used for the preparation, characterization, and exploration of photocatalytic properties of composite materials based on inorganic semiconductors in combination with sensitizers, such as porphyrins, phthalocyanines, and related macrocyclic compounds as promoters of photoinduced processes. In this context the advantage of hybrid photocatalysts, obtained by impregnation of photosensitizers onto the surface of different semiconductors, designed for improving a choice of diverse reactions has been demonstrated, highlighting innovative aspects that contribute to better sustainability of the photocatalytic processes. Mechanistic deta…
The lower rather than higher density charge carrier determines the NH 3 -sensing nature and sensitivity of ambipolar organic semiconductors
2018
International audience; Despite the extensive studies and great application potentials, the sensing nature of ambipolar organic semiconductor gas sensors still remains unclarified, unlike their inorganic counterparts. Herein, different numbers of thiophenoxy groups are introduced into the phthalocyanine periphery of bis(phthalocyaninato) rare earth semiconductors to continuously tune their HOMO and LUMO energies, resulting in the ambipolar M[Pc(SPh)(8)](2) [M = Eu (1), Ho (2)] and p-type M(Pc)[Pc(SPh)(8)] [M = Eu (3), Ho (4)]. An OFET in combination with direct I-V measurements over the devices from the self-assembled nanostructures of 1-4 revealed the original electron and hole densities (…
Magneto-optical nanomaterials: a SPIO–phthalocyanine scaffold built step-by-step towards bimodal imaging
2013
A SPIO-phthalocyanine nanohybrid is developed as a bimodal contrast agent for Optical and Magnetic Resonance Imaging. The organic coating was covalently attached onto SPIO in a step-by-step approach. Each coated-SPIO was thoroughly characterized. The hydrodynamic size of the SPIO-Pc is ca. 60 nm with a coverage of ca. 690 Pc/SPIO.
Interactions of zinc octacarboxyphthalocyanine with selected amino acids and with albumin
2015
Effect of selected amino acids (glycine, l-histidine, l-cysteine, l-serine, l-tryptophan) and albumin on the spectroscopic properties and photostability of zinc octacarboxyphthalocyanine (ZnPcOC) was explored in the phosphate buffer at a pH of 7.0. The photodegradation of ZnPcOC alone and in the presence of amino acids or albumin has been investigated in aqueous phase using UV-366 nm and daylight irradiation. Kinetic analysis showed that the interaction with amino acids or albumin enhances the photostability of ZnPcOC. To answer the question of how zinc phthalocyanine interacts with amino acids extensive DFT calculations were performed. Analysis of the optimized geometry features of ZnPcOC:…
Aromaticity and planarity of zinc phthalocyanine (ZnPc) characterized by splitting of NICS(1) index
2018
The planarity of zinc phthalocyanine (ZnPc) in the gas phase and water, with solute-solvent interactions modeled by polarized continuum model (PCM), has been characterized with new indexes of aromaticity. The aromaticity of individual ring subunits of ZnPc molecule was studied on the basis of nucleus independent chemical shift index (NICS) above and below the molecular plane. Density functional theory (DFT) with selected Pople-type basis sets was used to study the local aromaticity. The calculated NICS(1) and NICS(-1) indexes of aromaticity for a non-planar ZnPc molecule in the polar environment are significantly different.