Search results for "Physics Institute"
showing 10 items of 39 documents
Update of the Binoth Les Houches Accord for a standard interface between Monte Carlo tools and one-loop programs
2014
We present an update of the Binoth Les Houches Accord (BLHA) to standardise the interface between Monte Carlo programs and codes providing one-loop matrix elements.
Limits on the release of Rb isotopes from a zeolite based 83mKr calibration source for the XENON project
2011
The isomer 83mKr with its half-life of 1.83 h is an ideal calibration source for a liquid noble gas dark matter experiment like the XENON project. However, the risk of contamination of the detector with traces of the much longer lived mother isotop 83Rb (86.2 d half-life) has to be ruled out. In this work the release of 83Rb atoms from a 1.8 MBq 83Rb source embedded in zeolite beads has been investigated. To do so, a cryogenic trap has been connected to the source for about 10 days, after which it was removed and probed for the strongest 83Rb gamma-rays with an ultra-sensitive Germanium detector. No signal has been found. The corresponding upper limit on the released 83Rb activity means tha…
First observation of a baryonic Bc+ decay
2014
A baryonic decay of the $B_c^+$ meson, $B_c^+\to J/\psi p\overline{p}\pi^+$, is observed for the first time, with a significance of $7.3$ standard deviations, in $pp$ collision data collected with the LHCb detector and corresponding to an integrated luminosity of $3.0$ fb$^{-1}$ taken at center-of-mass energies of $7$ and $8$ $\mathrm{TeV}$. With the $B_c^+\to J/\psi \pi^+$ decay as normalization channel, the ratio of branching fractions is measured to be \begin{equation*} \frac{\mathcal{B}(B_c^+\to J/\psi p\overline{p}\pi^+)}{\mathcal{B}(B_c^+\to J/\psi \pi^+)} = 0.143^{\,+\,0.039}_{\,-\,0.034}\,(\mathrm{stat})\pm0.013\,(\mathrm{syst}). \end{equation*} The mass of the $B_c^+$ meson is dete…
Precision Measurement of the Mass and Lifetime of the Ξ[0 over b] Baryon
2014
Using a proton-proton collision data sample corresponding to an integrated luminosity of 3 fb$^{-1}$ collected by LHCb at center-of-mass energies of 7 and 8 TeV, about 3800 $\Xi_b^0\to\Xi_c^+\pi^-$, $\Xi_c^+\to pK^-\pi^+$ signal decays are reconstructed. From this sample, the first measurement of the $\Xi_b^0$ baryon lifetime is made, relative to that of the $\Lambda_b^0$ baryon. The mass differences $M(\Xi_b^0)-M(\Lambda_b^0)$ and $M(\Xi_c^+)-M(\Lambda_c^+)$ are also measured with precision more than four times better than the current world averages. The resulting values are $\frac{\tau_{\Xi_b^0}}{\tau_{\Lambda_b^0}} = 1.006\pm0.018\pm0.010$, $M(\Xi_b^0) - M(\Lambda_b^0) = 172.44\pm0.39\pm…
ZZ production at the LHC: Fiducial cross sections and distributions in NNLO QCD
2015
We consider QCD radiative corrections to the production of four charged leptons in the ZZ signal region at the LHC. We report on the complete calculation of the next-to-next-to-leading order (NNLO) corrections to this process in QCD perturbation theory. Numerical results are presented for $\sqrt{s}=8$ TeV, using typical selection cuts applied by the ATLAS and CMS collaborations. The NNLO corrections increase the NLO fiducial cross section by about $15\%$, and they have a relatively small impact on the shape of the considered kinematical distributions. In the case of the $\Delta\Phi$ distribution of the two Z candidates, the NNLO corrections improve the agreement of the theoretical predictio…
Consistent Searches for SMEFT Effects in Non-Resonant Dilepton Events
2019
Employing the framework of the Standard Model Effective Field Theory, we perform a detailed reinterpretation of measurements of the Weinberg angle in dilepton production as a search for new-physics effects. We truncate our signal prediction at order $1/\Lambda^2$, where $\Lambda$ denotes the new-physics mass scale, and introduce a theory error to account for unknown contributions of order $1/\Lambda^4$. Two linear combinations of four-fermion operators with distinct angular behavior contribute to dilepton production with growing impact at high energies. We define suitable angular observables and derive bounds on those two linear combinations using data from the Tevatron and the LHC. We find…
Searching for Physics Beyond the Standard Model in an Off-Axis DUNE Near Detector
2021
Next generation neutrino oscillation experiments like DUNE and T2HK are multi-purpose observatories, with a rich physics program beyond oscillation measurements. A special role is played by their near detector facilities, which are particularly well-suited to search for weakly coupled dark sector particles produced in the primary target. In this paper, we demonstrate this by estimating the sensitivity of the DUNE near detectors to the scattering of sub-GeV DM particles and to the decay of sub-GeV sterile neutrinos ("heavy neutral leptons"). We discuss in particular the importance of the DUNE-PRISM design, which allows some of the near detectors to be moved away from the beam axis. At such o…
NLO QCD+EW predictions for V+jets including off-shell vector-boson decays and multijet merging
2016
We present next-to-leading order (NLO) predictions including QCD and electroweak (EW) corrections for the production and decay of off-shell electroweak vector bosons in association with up to two jets at the 13 TeV LHC. All possible dilepton final states with zero, one or two charged leptons that can arise from off-shell W and Z bosons or photons are considered. All predictions are obtained using the automated implementation of NLO QCD+EW corrections in the OpenLoops matrix-element generator combined with the Munich and Sherpa Monte Carlo frameworks. Electroweak corrections play an especially important role in the context of BSM searches, due to the presence of large EW Sudakov logarithms a…
Effective field theory after a new-physics discovery
2018
When a new heavy particle is discovered at the LHC or at a future high-energy collider, it will be interesting to study its decays into Standard Model particles using an effective field-theory framework. We point out that the proper effective theory can not be constructed as an expansion in local, higher-dimensional operators; rather, it must be based on non-local operators defined in soft-collinear effective theory (SCET). For the interesting case where the new resonance is a gauge-singlet spin-0 boson, which is the first member of a new sector governed by a mass scale $M$, we show how a consistent scale separation between $M$ and the electroweak scale $v$ is achieved up to next-to-next-to…
$W^{+}W^{-}$ production at the LHC: fiducial cross sections and distributions in NNLO QCD
2016
We consider QCD radiative corrections to $W^+W^-$ production at the LHC and present the first fully differential predictions for this process at next-to-next-to-leading order (NNLO) in perturbation theory. Our computation consistently includes the leptonic decays of the $W$ bosons, taking into account spin correlations, off-shell effects and non-resonant contributions. Detailed predictions are presented for the different-flavour channel $pp\to\mu^+e^-\nu_\mu {\bar \nu}_e+X$ at $\sqrt{s}=8$ and $13$ TeV. In particular, we discuss fiducial cross sections and distributions in the presence of standard selection cuts used in experimental $W^+W^-$ and $H\to W^+W^-$ analyses at the LHC. The inclus…