Search results for "Physics::Computational Physics"

showing 7 items of 17 documents

Particle in Harmonic E-Field E ( t ) = E sin ω 0 t $$E(t)= E \sin \omega _0 t$$ ; Schwinger–Fock Proper-Time Method

2020

Since the Green’s function of a Dirac particle in an external field, which is described by a potential Aμ(x), is given by

Physics::Computational PhysicsPhysicsElectric fieldQuantum electrodynamicsDirac (software)Proper timeParticleHarmonic (mathematics)Function (mathematics)Computer Science::Numerical AnalysisOmegaFock space
researchProduct

The Dalton quantum chemistry program system

2013

Dalton is a powerful general-purpose program system for the study of molecular electronic structure at the Hartree-Fock, Kohn-Sham, multiconfigurational self-consistent-field, MOller-Plesset, confi ...

Physics::Computational PhysicsPhysicsNuclear TheoryBiochemistryQuantum chemistryComputer Science ApplicationsComputational MathematicsComputational chemistryAb initio quantum chemistry methodsQuantum mechanicsMolecular electronic structurePhysics::Atomic and Molecular ClustersMaterials ChemistryPhysics::Atomic PhysicsPhysics::Chemical PhysicsPhysical and Theoretical ChemistryWiley Interdisciplinary Reviews: Computational Molecular Science
researchProduct

"Table 1" of "Measurement of the differential cross section d\sigma/dt in elastic $p\bar{p}$ scattering at sqrt(s)=1.96 TeV"

2015

The $d\sigma$/$dt$ differential cross section. The statistical and systematic uncertainties are added in quadrature.

Physics::Computational PhysicsSingle Differential Cross SectionElasticDSIG/DT1960.0PBAR P --> PBAR PMathematics::Numerical AnalysisProton-AntiProton Elastic Differential Cross Section
researchProduct

Gauss-Type Quadrature Formulae for Parabolic Splines with Equidistant Knots

2010

We construct Gauss, Lobatto, and Radau quadrature formulae associated with the spaces of parabolic splines with equidistant knots. These quadrature formulae are known to be asymptotically optimal in Sobolev spaces W p 3. Sharp estimates for the error constant in W ∞ 3 are given.

Physics::Computational PhysicsSobolev spaceAsymptotically optimal algorithmMathematical analysisGaussEquidistantConstant errorMathematics::Numerical AnalysisMathematicsQuadrature (mathematics)
researchProduct

Classical and quantum vortex leapfrogging in two-dimensional channels

2020

The leapfrogging of coaxial vortex rings is a famous effect which has been noticed since the times of Helmholtz. Recent advances in ultra-cold atomic gases show that the effect can now be studied in quantum fluids. The strong confinement which characterizes these systems motivates the study of leapfrogging of vortices within narrow channels. Using the two-dimensional point vortex model, we show that in the constrained geometry of a two-dimensional channel the dynamics is richer than in an unbounded domain: alongsize the known regimes of standard leapfrogging and the absence of it, we identify new regimes of backward leapfrogging and periodic orbits. Moreover, by solving the Gross-Pitaevskii…

Quantum fluidFOS: Physical sciences01 natural sciences010305 fluids & plasmassymbols.namesakeQuantum fluids0103 physical sciencesVortex dynamics010306 general physicsLeapfroggingSettore MAT/07 - Fisica MatematicaQuantumPhysicsPhysics::Computational PhysicsCondensed Matter::Quantum GasesMechanical EngineeringQuantum vortexFluid Dynamics (physics.flu-dyn)Physics - Fluid DynamicsVorticityCondensed Matter PhysicsVortexVortex ringClassical mechanicsMechanics of MaterialsQuantum Gases (cond-mat.quant-gas)Helmholtz free energysymbolsVortex interactionsCondensed Matter - Quantum Gases
researchProduct

WENO schemes applied to the quasi-relativistic Vlasov-Maxwell model for laser-plasma interaction

2014

Abstract In this paper we focus on WENO-based methods for the simulation of the 1D Quasi-Relativistic Vlasov–Maxwell (QRVM) model used to describe how a laser wave interacts with and heats a plasma by penetrating into it. We propose several non-oscillatory methods based on either Runge–Kutta (explicit) or Time-Splitting (implicit) time discretizations. We then show preliminary numerical experiments.

Strategy and ManagementFOS: Physical sciences010103 numerical & computational mathematics01 natural scienceslaw.inventionMathematics::Numerical Analysislaser-plasma interactionMathematics - Analysis of PDEslawMedia TechnologyFOS: MathematicsVlasov--Maxwell[MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP]General Materials ScienceMathematics - Numerical Analysis0101 mathematicsMarketingPhysicsPhysics::Computational PhysicsWENOPlasmaNumerical Analysis (math.NA)Computational Physics (physics.comp-ph)LaserRunge--Kutta schemes010101 applied mathematicsClassical mechanicsStrang splittingFocus (optics)Physics - Computational PhysicsAnalysis of PDEs (math.AP)Strang splitting
researchProduct

Механика композитных материалов, 2022, Т. 58, No 1, Январь-февраль

2022

low-velocity impactcomposite structure:NATURAL SCIENCES::Physics::Other physics::Computational physics [Research Subject Categories]statistical controlmechanical propertiespolypropylene
researchProduct