Search results for "Physik"
showing 10 items of 293 documents
Current-driven periodic domain wall creation in ferromagnetic nanowires
2016
We predict the electrical generation and injection of domain walls into a ferromagnetic nano-wire without the need of an assisting magnetic field. Our analytical and numerical results show that above a critical current $j_{c}$ domain walls are injected into the nano-wire with a period $T \sim (j-j_{c})^{-1/2}$. Importantly, domain walls can be produced periodically even in a simple exchange ferromagnet with uniaxial anisotropy, without requiring any standard "twisting" interaction like Dzyaloshinskii-Moriya or dipole-dipole interactions. We show analytically that this process and the period exponents are universal and do not depend on the peculiarities of the microscopic Hamiltonian. Finall…
New Boundary-Driven Twist States in Systems with Broken Spatial Inversion Symmetry
2017
A full description of a magnetic sample includes a correct treatment of the boundary conditions (BCs). This is in particular important in thin film systems, where even bulk properties might be modified by the properties of the boundary of the sample. We study generic ferromagnets with broken spatial inversion symmetry and derive the general micromagnetic BCs of a system with Dzyaloshinskii-Moriya interaction (DMI). We demonstrate that the BCs require the full tensorial structure of the third-rank DMI tensor and not just the antisymmetric part, which is usually taken into account. Specifically, we study systems with $C_{\infty v}$ symmetry and explore the consequences of the DMI. Interesting…
Effective description of domain wall strings
2017
The analysis of domain wall dynamics is often simplified to one-dimensional physics. For domain walls in thin films, more realistic approaches require the description as two-dimensional objects. This includes the study of vortices and curvatures along the domain walls as well as the influence of boundary effects. Here we provide a theory in terms of soft modes that allows us to analytically study the physics of extended domain walls and their stability. By considering irregularly shaped skyrmions as closed domain walls, we analyze their plasticity and compare their dynamics with those of circular skyrmions. Our theory directly provides an analytical description of the excitation modes of ma…
Nonlinear Dynamics of Topological Ferromagnetic Textures for Frequency Multiplication
2020
We propose that the non-linear radio-frequency dynamics and nanoscale size of topological magnetic structures associated to their well-defined internal modes advocate for their use as in-materio scalable frequency multipliers for spintronic systems. Frequency multipliers allow for frequency conversion between input and output frequencies, and thereby significantly increase the range of controllably accessible frequencies. In particular, we explore the excitation of eigenmodes of topological magnetic textures by fractions of the corresponding eigenfrequencies. We show via micromagnetic simulations that low-frequency perturbations to the system can efficiently excite bounded modes with a high…
Dynamical Casimir-Polder interaction between an atom and surface plasmons
2013
We investigate the time-dependent Casimir-Polder potential of a polarizable two-level atom placed near a surface of arbitrary material, after a sudden change in the parameters of the system. Different initial conditions are taken into account. For an initially bare ground-state atom, the time-dependent Casimir-Polder energy reveals how the atom is "being dressed" by virtual, matter-assisted photons. We also study the transient behavior of the Casimir-Polder interaction between the atom and the surface starting from a partially dressed state, after an externally induced change in the atomic level structure or transition dipoles. The Heisenberg equations are solved through an iterative techni…
A simple quantum gate with atom chips
2005
We present a simple scheme for implementing an atomic phase gate using two degrees of freedom for each atom and discuss its realization with cold rubidium atoms on atom chips. We investigate the performance of this collisional phase gate and show that gate operations with high fidelity can be realized in magnetic traps that are currently available on atom chips.
Evidence for phonon skew scattering in the spin Hall effect of platinum
2018
We measure and analyze the effective spin Hall angle of platinum in the low-residual resistivity regime by second-harmonic measurements of the spin-orbit torques for a multilayer of $\mathrm{Pt}|\mathrm{Co}|{\mathrm{AlO}}_{x}$. An angular-dependent study of the torques allows us to extract the effective spin Hall angle responsible for the damping-like torque in the system. We observe a strikingly nonmonotonic and reproducible temperature dependence of the torques. This behavior is compatible with recent theoretical predictions which include both intrinsic and extrinsic (impurities and phonons) contributions to the spin Hall effect at finite temperatures.
Twists in Ferromagnetic Monolayers With Trigonal Prismatic Symmetry
2018
Two-dimensional materials such as graphene or hexagonal boron nitride are indispensable in industry. The recently discovered 2D ferromagnetic materials also promise to be vital for applications. In this work, we develop a phenomenological description of non-centrosymmetric 2D ferromagnets with trigonal prismatic crystal structure. We chose to study this special symmetry group since these materials do break inversion symmetry and therefore, in principle, allow for chiral spin structures such as magnetic helices and skyrmions. However, unlike all non-centrosymmetric magnets known so far, we show that the symmetry of magnetic trigonal prismatic monolayers neither allow for an internal relativi…
Preservation of quantum coherence after exciton-exciton interaction in quantum wells
2003
The dynamics of exciton-exciton interaction in quantum wells has been investigated by monitoring the time-resolved resonant secondary emission that follows excitation with linearly and circularly polarized light. Preservation of quantum beating in the cross-polarized emission demonstrates that spin relaxation can take place, for some scattering channels, without total quantum coherence loss. Interexciton electron exchange is the scattering mechanism that explains the persistence of the beating and, since it is sensitive to the fine structure of excitons, the shift by pi in the phase of the beating observed in the experiment.
Interplay of Dzyaloshinskii-Moriya and Kitaev interactions for magnonic properties of Heisenberg-Kitaev honeycomb ferromagnets
2020
The properties of Kitaev materials are attracting ever increasing attention owing to their exotic properties. In realistic two-dimensional materials, Kitaev interaction is often accompanied by the Dzyloshinskii-Moriya interaction, which poses a challenge of distinguishing their magnitude separately. In this work, we demonstrate that it can be done by accessing magnonic transport properties. By studying honeycomb ferromagnets exhibiting Dzyaloshinskii-Moriya and Kitaev interactions simultaneously, we reveal non-trivial magnonic topological properties accompanied by intricate magnonic transport characteristics as given by thermal Hall and magnon Nernst effects. We also investigate the effect …