Search results for "Pixel"
showing 10 items of 421 documents
A completely automated CAD system for mass detection in a large mammographic database
2006
Mass localization plays a crucial role in computer-aided detection (CAD) systems for the classification of suspicious regions in mammograms. In this article we present a completely automated classification system for the detection of masses in digitized mammographic images. The tool system we discuss consists in three processing levels: (a) Image segmentation for the localization of regions of interest (ROIs). This step relies on an iterative dynamical threshold algorithm able to select iso-intensity closed contours around gray level maxima of the mammogram. (b) ROI characterization by means of textural features computed from the gray tone spatial dependence matrix (GTSDM), containing secon…
PCA Gaussianization for image processing
2009
The estimation of high-dimensional probability density functions (PDFs) is not an easy task for many image processing applications. The linear models assumed by widely used transforms are often quite restrictive to describe the PDF of natural images. In fact, additional non-linear processing is needed to overcome the limitations of the model. On the contrary, the class of techniques collectively known as projection pursuit, which solve the high-dimensional problem by sequential univariate solutions, may be applied to very general PDFs (e.g. iterative Gaussianization procedures). However, the associated computational cost has prevented their extensive use in image processing. In this work, w…
Large scale semi-supervised image segmentation with active queries
2011
A semiautomatic procedure to generate classification maps of remote sensing images is proposed. Starting from a hierarchical unsupervised classification, the algorithm exploits the few available labeled pixels to assign each cluster to the most probable class. For a given amount of labeled pixels, the algorithm returns a classified segmentation map, along with confidence levels of class membership for each pixel. Active learning methods are used to select the most informative samples to increase confidence in the class membership. Experiments on a AVIRIS hyperspectral image confirm the effectiveness of the method, especially when used with active learning query functions and spatial regular…
Derivation of high-resolution leaf area index maps in support of validation activities: Application to the cropland Barrax site
2009
The validation of coarse satellite-derived products from field measurements generally relies on up-scaling the field data to the corresponding satellite products. This question is commonly addressed through the generation of a reference high-resolution map of an area covering several moderate resolution pixels. This paper describes a method by which reference leaf area index (LAI) maps can be generated from ground-truth LAI measurements. The method is based on a multivariate ordinary least squares (OLS) algorithm which uses an iteratively re-weighted least squares (IRLS) algorithm. It provides an empirical relationship (i.e. a transfer function) between in situ measurements and concomitant …
Experiments with an adaptive Bayesian restoration method
1989
Abstract This paper describes a Bayesian restoration method applied to two-dimensional measured images, whose detector response function is not completely known. The response function is assumed Gaussian with standard deviation depending on the estimate of the local density of the image. The convex hull of the K -nearest neighbours ( K NN) of each ‘on’ pixel is used to compute the local density. The method has been tested on ‘sparse’ images, with and without noise background.
Mammographic images segmentation based on chaotic map clustering algorithm
2013
Background: This work investigates the applicability of a novel clustering approach to the segmentation of mammographic digital images. The chaotic map clustering algorithm is used to group together similar subsets of image pixels resulting in a medically meaningful partition of the mammography. Methods: The image is divided into pixels subsets characterized by a set of conveniently chosen features and each of the corresponding points in the feature space is associated to a map. A mutual coupling strength between the maps depending on the associated distance between feature space points is subsequently introduced. On the system of maps, the simulated evolution through chaotic dynamics leads…
Unsupervised change detection with kernels
2012
In this paper an unsupervised approach to change detection relying on kernels is introduced. Kernel based clustering is used to partition a selected subset of pixels representing both changed and unchanged areas. Once the optimal clustering is obtained the estimated representatives (centroids) of each group are used to assign the class membership to all others pixels composing the multitemporal scenes. Different approaches of considering the multitemporal information are considered with accent on the computation of the difference image directly in the feature spaces. For this purpose a difference kernel approach is successfully adopted. Finally an effective way to cope with the estimation o…
Automatic Extraction of Blood Vessels, Bifurcations and End Points in the Retinal Vascular Tree
2008
In this paper we present an effective algorithm for automated extraction of the vascular tree in retinal images, including bifurcations, crossovers and end-points detection. Correct identification of these features in the ocular fundus helps the diagnosis of important systematic diseases, such as diabetes and hypertension. The pre-processing consists in artefacts removal based on anisotropic diffusion filter. Then a matched filter is applied to enhance blood vessels. The filter uses a full adaptive kernel because each vessel has a proper orientation and thickness. The kernel of the filter needs to be rotated for all possible directions. As a consequence, a suitable kernel has been designed …
The TES-based cryogenic anticoincidence detector for IXO: First results from large area prototypes
2010
The technique which combines high resolution spectroscopy with imaging capability is a powerful tool to extract fundamental information in X-ray Astrophysics and Cosmology. TES (Transition Edge Sensors)-based microcalorimeters match at best the requirements for doing fine spectroscopy and imaging of both bright (high count rate) and faint (poor signal-to-noise ratio) sources. For this reason they are considered among the most promising detectors for the next high energy space missions and are being developed for use on the focal plane of the IXO (International X-ray Observatory) mission. In order to achieve the required signal-to-noise ratio for faint or diffuse sources it is necessary to r…
Dimensionality Reduction Techniques: An Operational Comparison On Multispectral Satellite Images Using Unsupervised Clustering
2006
Multispectral satellite imagery provides us with useful but redundant datasets. Using Dimensionality Reduction (DR) algorithms, these datasets can be made easier to explore and to use. We present in this study an objective comparison of five DR methods, by evaluating their capacity to provide a usable input to the K-means clustering algorithm. We also suggest a method to automatically find a suitable number of classes K, using objective "cluster validity indexes" over a range of values for K. Ten Landsat images have been processed, yielding a classification rate in the 70-80% range. Our results also show that classical linear methods, though slightly outperformed by more recent nonlinear al…