Search results for "Plastocyanin"
showing 5 items of 5 documents
NMR and homology modeling studies of copper(II)-halocyanin from Natronobacterium pharaonis bacteria
2004
Abstract Halocyanin from the haloalkaliphilic archaean Natronobacterium pharaonis is a peripheral membrane type 1 blue copper protein with a single polypeptide chain of 163 amino acid residues. Halocyanin participates as putative electron carrier protein associated to an electron acceptor role for a terminal oxidase and has the lowest redox potential value reported to date for a BCP. NMR studies and homology modeling calculations were performed to evaluate the electronic properties of Cu(II)-halocyanin from Natronobacterium pharaonis . The copper coordination site properties of Cu(II)-halocyanin are discussed. The 1 H NMR spectra, isotropic chemical shifts and relaxation times for halocyani…
Evidence for the operation of a cyanide-sensitive oxidase in chlororespiration in the thylakoids of the chlorophyll c-containing alga Pleurochloris m…
1995
For characterisation of chlororespiration in the chlorophyll c-containing alga Pleurochloris meiringensis, we measured the flash-induced electrochromic absorbance changes between 470 and 545 nm and the redox changes of cytochrome f and cytochrome c553. Cytochrome c553 was shown to be present in high amounts (1 mol cytochrome c553 per 300 mol chlorophyll) in this alga and to function as the obligate electron donor for photosystem I instead of plastocyanin. Whereas salicylhydroxamic acid had no effect on the flash-induced absorbance transients, cyanide enhanced the slow-rising (t1/2≈10 ms) kinetic component of the electrochromic absorbance change. Cyanide also accelerated the re-reduction of …
Study of electrostatic potential surface distribution of wild-type plastocyaninSynechocystissolution structure determined by homonuclear NMR
2003
Plastocyanin is a small (∼10 kDa), type I blue copper protein that works as an electron donor to photosystem I from cytochrome f in both chloroplast systems and in some strains of cyanobacteria. Comparative studies of the kinetic mechanisms of plastocyanins in different organisms show that the electron transfer from photosystem I happens by simple collision in cyanobacteria but through a intermediate transition complex in green algae and superior plants. Previous work has proved that this effect cannot be explained by structural variations across the different plastocyanins but it can be explained by differences in the electrostatic potential distribution at the protein surface. In that cas…
Applications of level shift corrected perturbation theory in electronic spectroscopy
1996
Abstract Multiconfigurational second-order perturbation theory (CASPT2) with a level shift technique used to reduce the effect of intruder states has been tested for applications in electronic spectroscopy. The following molecules have been studied: formamide, adenine, stilbene, Ni(CO) 4 , and a model compound for the active site in the blue copper protein plastocyanin, Cu(Im) 2 (SH)(SH 2 ) + . The results show that the level shift technique can be used to remove the effects of the intruder states in all these molecules. In some cases a drift in the energies as a function of the level shift is observed, which however is small enough that the normal error bar for CASPT2 excitation energies (…
Isolation of chlorophyll-protein complexes and quantification of electron transport components in Synura petersenii and Tribonema aequale
1983
The chlorophyll-protein complexes of the yellow alga Synura petersenii (Chrysophyceae) and the yellow-green alga Tribonema aequale (Xanthophyceae) were studied. The sodiumdodecylsulfate/sodiumdesoxycholate solubilized photosynthetic membranes of these species yielded three distinct pigment-protein complexes and a non-proteinuous zone of free pigments, when subjected to SDS polyacrylamid gel electrophoresis. The slowest migrating protein was identical to complex I (CP I), the P-700 chlorophyll a-protein, which possessed 60 chlorophyll a molecules per reaction center in Tribonema and 108 in Synura. The zone of intermediate mobility contained chlorophyll a and carotenoids. The absorption spect…