Search results for "Point Proce"

showing 10 items of 112 documents

Including covariates in a space-time point process with application to seismicity

2020

AbstractThe paper proposes a spatio-temporal process that improves the assessment of events in space and time, considering a contagion model (branching process) within a regression-like framework to take covariates into account. The proposed approach develops the forward likelihood for prediction method for estimating the ETAS model, including covariates in the model specification of the epidemic component. A simulation study is carried out for analysing the misspecification model effect under several scenarios. Also an application to the Italian seismic catalogue is reported, together with the reference to the developed R package.

Statistics and ProbabilityMathematical optimization010504 meteorology & atmospheric sciencesSpacetimeComputer scienceSpace timeSpace-time point processes ETAS model R package for seismic datacovariatesProcess (computing)01 natural sciencesPoint process010104 statistics & probabilitySpecificationComponent (UML)Covariate0101 mathematicsStatistics Probability and Uncertainty0105 earth and related environmental sciencesBranching process
researchProduct

Forward likelihood-based predictive approach for space-time point processes

2011

Dealing with data from a space–time point process, the estimation of the conditional intensity function is a crucial issue even if a complete definition of a parametric model is not available. In particular, in case of exploratory contexts or if we want to assess the adequacy of a specific parametric model, some kind of nonparametric estimation procedure could be useful. Often, for these purposes kernel estimators are used and the estimation of the intensity function depends on the estimation of bandwidth parameters. In some fields, like for instance the seismological one, predictive properties of the estimated intensity function are pursued. Since a direct ML approach cannot be used, we pr…

Statistics and ProbabilityMathematical optimizationEcological ModelingSpace timespace–time point processesBandwidth (signal processing)Nonparametric statisticsEstimatorStatistical seismologynonparametric estimationPoint processParametric modellikelihood functionSettore SECS-S/01 - StatisticaLikelihood functionpredictive propertieMathematicsEnvironmetrics
researchProduct

Boolean Models: Maximum Likelihood Estimation from Circular Clumps

1990

This paper deals with the problem of making inferences on the maximum radius and the intensity of the Poisson point process associated to a Boolean Model of circular primary grains with uniformly distributed random radii. The only sample information used is observed radii of circular clumps (DUPAC, 1980). The behaviour of maximum likelihood estimation has been evaluated by means of Monte Carlo methods.

Statistics and ProbabilityMathematical optimizationEstimation theoryBoolean modelMonte Carlo methodMathematical analysisGeneral MedicineRadiusMaximum likelihood sequence estimationPoisson point processBoolean expressionStatistics Probability and UncertaintyIntensity (heat transfer)MathematicsBiometrical Journal
researchProduct

Bayesian analysis of a Gibbs hard-core point pattern model with varying repulsion range

2014

A Bayesian solution is suggested for the modelling of spatial point patterns with inhomogeneous hard-core radius using Gaussian processes in the regularization. The key observation is that a straightforward use of the finite Gibbs hard-core process likelihood together with a log-Gaussian random field prior does not work without penalisation towards high local packing density. Instead, a nearest neighbour Gibbs process likelihood is used. This approach to hard-core inhomogeneity is an alternative to the transformation inhomogeneous hard-core modelling. The computations are based on recent Markovian approximation results for Gaussian fields. As an application, data on the nest locations of Sa…

Statistics and ProbabilityMathematical optimizationGaussianBayesian probabilityBayesian analysisMarkov processRegularization (mathematics)symbols.namesakeGaussian process regularisationPERFECT SIMULATIONRange (statistics)Statistical physicsGaussian processMathematicsta113ta112Random fieldApplied MathematicsInhomogeneousSand Martin's nestsTRANSFORMATIONHard-core point processComputational MathematicsTransformation (function)Computational Theory and MathematicssymbolsINFERENCECOMPUTATIONAL STATISTICS AND DATA ANALYSIS
researchProduct

Point process diagnostics based on weighted second-order statistics and their asymptotic properties

2008

A new approach for point process diagnostics is presented. The method is based on extending second-order statistics for point processes by weighting each point by the inverse of the conditional intensity function at the point’s location. The result is generalized versions of the spectral density, R/S statistic, correlation integral and K-function, which can be used to test the fit of a complex point process model with an arbitrary conditional intensity function, rather than a stationary Poisson model. Asymptotic properties of these generalized second-order statistics are derived, using an approach based on martingale theory.

Statistics and ProbabilityMathematical optimizationSpectral densityInverseResidual analysis point process second-order analysis conditional intensity functionResidualPoint processWeightingCorrelation integralApplied mathematicsPoint (geometry)Settore SECS-S/01 - StatisticaStatisticMathematicsAnnals of the Institute of Statistical Mathematics
researchProduct

Gamma Kernel Intensity Estimation in Temporal Point Processes

2011

In this article, we propose a nonparametric approach for estimating the intensity function of temporal point processes based on kernel estimators. In particular, we use asymmetric kernel estimators characterized by the gamma distribution, in order to describe features of observed point patterns adequately. Some characteristics of these estimators are analyzed and discussed both through simulated results and applications to real data from different seismic catalogs.

Statistics and ProbabilityNonparametric statisticsEstimatorKernel principal component analysisPoint processVariable kernel density estimationKernel embedding of distributionsModeling and SimulationKernel (statistics)Bounded domainStatisticsGamma distributionGamma kernel estimatorIntensity functionTemporal point processes.Settore SECS-S/01 - StatisticaMathematicsCommunications in Statistics - Simulation and Computation
researchProduct

Windowed Etas Models With Application To The Chilean Seismic Catalogs

2015

Abstract The seismicity in Chile is estimated using an ETAS (Epidemic Type Aftershock sequences) space–time point process through a semi-parametric technique to account for the estimation of parametric and nonparametric components simultaneously. The two components account for triggered and background seismicity respectively, and are estimated by alternating a ML estimation for the parametric part and a forward predictive likelihood technique for the nonparametric one. Given the geographic and seismological characteristics of Chile, the sensitivity of the technique with respect to different geographical areas is examined in overlapping successive windows with varying latitude. A different b…

Statistics and ProbabilityNonparametric statisticsManagement Monitoring Policy and LawInduced seismicityGeodesyPoint processPhysics::GeophysicsLatitudeSpace-time point processes ETAS model etasFLP R packagePredictive likelihoodStatisticsSensitivity (control systems)Computers in Earth SciencesAftershockGeologyParametric statistics
researchProduct

Non-parametric Estimation of the Death Rate in Branching Diffusions

2002

We consider finite systems of diffusing particles in R with branching and immigration. Branching of particles occurs at position dependent rate. Under ergodicity assumptions, we estimate the position-dependent branching rate based on the observation of the particle process over a time interval [0, t]. Asymptotics are taken as t → ∞. We introduce a kernel-type procedure and discuss its asymptotic properties with the help of the local time for the particle configuration. We compute the minimax rate of convergence in squared-error loss over a range of Holder classes and show that our estimator is asymptotically optimal.

Statistics and ProbabilityParticle systemAsymptotically optimal algorithmRate of convergenceErgodicityCalculusEstimatorApplied mathematicsStatistics Probability and UncertaintyMinimaxPoint processMathematicsBranching processScandinavian Journal of Statistics
researchProduct

On statistical inference for the random set generated Cox process with set-marking.

2007

Cox point process is a process class for hierarchical modelling of systems of non-interacting points in ℝd under environmental heterogeneity which is modelled through a random intensity function. In this work a class of Cox processes is suggested where the random intensity is generated by a random closed set. Such heterogeneity appears for example in forestry where silvicultural treatments like harvesting and site-preparation create geometrical patterns for tree density variation in two different phases. In this paper the second order property, important both in data analysis and in the context of spatial sampling, is derived. The usefulness of the random set generated Cox process is highly…

Statistics and ProbabilityRandom graphRandom fieldMultivariate random variableRandom functionRandom elementGeneral MedicineModels BiologicalPoint processTreesCox processRandom variateStatisticsComputer SimulationStatistics Probability and UncertaintyAlgorithmMathematicsProportional Hazards ModelsBiometrical journal. Biometrische Zeitschrift
researchProduct

The 1970 US Draft Lottery Revisited: A Spatial Analysis

2004

Summary We revise the result of the 1970 selective service draft lottery in the USA following an open question that was suggested by Fienberg in a paper published in Science in 1971. The result of the drawings can be viewed as a particular spatial pattern which can be analysed by using general spatial tools adapted to our context. Approaches for assessing the complete spatial randomness for this spatial process on a finite support are proposed. More specifically, these approaches involve the number of events in a square window and a k(r)-based function used to analyse stationary spatial point processes.

Statistics and ProbabilityService (systems architecture)Complete spatial randomnessTheoretical computer scienceProcess (engineering)media_common.quotation_subjectContext (language use)Point processLotteryEconometricsCommon spatial patternStatistics Probability and UncertaintyFunction (engineering)Mathematicsmedia_commonJournal of the Royal Statistical Society Series C: Applied Statistics
researchProduct