Search results for "Point Process"
showing 10 items of 102 documents
Point process diagnostics based on weighted second-order statistics and their asymptotic properties
2008
A new approach for point process diagnostics is presented. The method is based on extending second-order statistics for point processes by weighting each point by the inverse of the conditional intensity function at the point’s location. The result is generalized versions of the spectral density, R/S statistic, correlation integral and K-function, which can be used to test the fit of a complex point process model with an arbitrary conditional intensity function, rather than a stationary Poisson model. Asymptotic properties of these generalized second-order statistics are derived, using an approach based on martingale theory.
Gamma Kernel Intensity Estimation in Temporal Point Processes
2011
In this article, we propose a nonparametric approach for estimating the intensity function of temporal point processes based on kernel estimators. In particular, we use asymmetric kernel estimators characterized by the gamma distribution, in order to describe features of observed point patterns adequately. Some characteristics of these estimators are analyzed and discussed both through simulated results and applications to real data from different seismic catalogs.
Windowed Etas Models With Application To The Chilean Seismic Catalogs
2015
Abstract The seismicity in Chile is estimated using an ETAS (Epidemic Type Aftershock sequences) space–time point process through a semi-parametric technique to account for the estimation of parametric and nonparametric components simultaneously. The two components account for triggered and background seismicity respectively, and are estimated by alternating a ML estimation for the parametric part and a forward predictive likelihood technique for the nonparametric one. Given the geographic and seismological characteristics of Chile, the sensitivity of the technique with respect to different geographical areas is examined in overlapping successive windows with varying latitude. A different b…
Non-parametric Estimation of the Death Rate in Branching Diffusions
2002
We consider finite systems of diffusing particles in R with branching and immigration. Branching of particles occurs at position dependent rate. Under ergodicity assumptions, we estimate the position-dependent branching rate based on the observation of the particle process over a time interval [0, t]. Asymptotics are taken as t → ∞. We introduce a kernel-type procedure and discuss its asymptotic properties with the help of the local time for the particle configuration. We compute the minimax rate of convergence in squared-error loss over a range of Holder classes and show that our estimator is asymptotically optimal.
On statistical inference for the random set generated Cox process with set-marking.
2007
Cox point process is a process class for hierarchical modelling of systems of non-interacting points in ℝd under environmental heterogeneity which is modelled through a random intensity function. In this work a class of Cox processes is suggested where the random intensity is generated by a random closed set. Such heterogeneity appears for example in forestry where silvicultural treatments like harvesting and site-preparation create geometrical patterns for tree density variation in two different phases. In this paper the second order property, important both in data analysis and in the context of spatial sampling, is derived. The usefulness of the random set generated Cox process is highly…
The 1970 US Draft Lottery Revisited: A Spatial Analysis
2004
Summary We revise the result of the 1970 selective service draft lottery in the USA following an open question that was suggested by Fienberg in a paper published in Science in 1971. The result of the drawings can be viewed as a particular spatial pattern which can be analysed by using general spatial tools adapted to our context. Approaches for assessing the complete spatial randomness for this spatial process on a finite support are proposed. More specifically, these approaches involve the number of events in a square window and a k(r)-based function used to analyse stationary spatial point processes.
Spatial Mark-Recapture Method in the Estimation of Crayfish Population Size
1995
The mark-recapture method is considered for estimation of population size of slowly moving animals like crayfish. The Petersen type estimator for closed population is generalized for situations where recaptures are spatially dependent between the capture sites, and its variance approximation is derived using point processes as models for the population. The method of quadratic forms is suggested to be used as variance estimator. Finally, a trapping design is proposed where onc trap at recapture is replaced by four adjacent traps. A simulation experiment is performed to explain the robusticity of the new trapping design against movements of animals.
Deducing self-interaction in eye movement data using sequential spatial point processes
2016
Eye movement data are outputs of an analyser tracking the gaze when a person is inspecting a scene. These kind of data are of increasing importance in scientific research as well as in applications, e.g. in marketing and man-machine interface planning. Thus the new areas of application call for advanced analysis tools. Our research objective is to suggest statistical modelling of eye movement sequences using sequential spatial point processes, which decomposes the variation in data into structural components having interpretation. We consider three elements of an eye movement sequence: heterogeneity of the target space, contextuality between subsequent movements, and time-dependent behaviou…
Assessing local differences between the spatio-temporal second-order structure of two point patterns occurring on the same linear network
2021
Abstract We introduce Local Indicators of Spatio-Temporal Association (LISTA) functions on linear networks and use them to build a statistical test for local second-order structure. This allows to identify differences in the spatio-temporal clustering behaviour of two point patterns, a point pattern of interest and a background one, both occurring on the same linear network. We assess the performance of the testing procedure for local second-order structure through simulation studies under a variety of scenarios that also account for different generating point processes. We show that the proposed local test is able to correctly identify the spatio-temporal difference in the local second-ord…
Recent applications of point process methods in forestry statistics
2000
Forestry statistics is an important field of applied statistics with a long tradition. Many forestry problems can be solved by means of point processes or marked point processes. There, the "points" are tree locations and the "marks" are tree characteristics such as diameter at breast height or degree of damage by environmental factors. Point pro- cess characteristics are valuable tools for exploratory data analysis in forestry, for describing the variability of forest stands and for under- standing and quantifying ecological relationships. Models of point pro- cesses are also an important basis of modern single-tree modeling, that gives simulation tools for the investigation of forest stru…