Search results for "Point proce"
showing 10 items of 112 documents
Testing abnormality in the spatial arrangement of cells in the corneal endothelium using spatial point processes
2001
The study of central corneal endothelium morphology is important in Ophthalmology. Some of the pathologies that could compromise endothelial cell morphology are trauma, cataract, surgery, use of contact lenses, corneal dystrophies or degenerations. The quantitative analysis of cell shape and cellular pattern is more sensitive in detecting subtle changes in endothelial morphology than cell density measurement or cell area analysis. In this paper, the morphology of the central cornea, the most important area from the point of view of vision, is studied through an associated bivariate spatial point pattern: the centroids of the cells and the triple points, that is, the points where three diffe…
Second-order diagnostics for space-time point processes with application to seismic events
2008
A diagnostic method for space-time point process is introduced and used to interpret and assess the goodness of fit of particular models to real data such as the seismic ones. The proposed method is founded on the definition of a weighted process and allows to detect second-order features of data, like long-range dependence and fractal behavior, that are not accounted for by the fitted model. Applications to earthquake data are provided. Copyright © 2008 John Wiley & Sons, Ltd.
Intensity estimation for inhomogeneous Gibbs point process with covariates-dependent chemical activity
2014
Recent development of intensity estimation for inhomogeneous spatial point processes with covariates suggests that kerneling in the covariate space is a competitive intensity estimation method for inhomogeneous Poisson processes. It is not known whether this advantageous performance is still valid when the points interact. In the simplest common case, this happens, for example, when the objects presented as points have a spatial dimension. In this paper, kerneling in the covariate space is extended to Gibbs processes with covariates-dependent chemical activity and inhibitive interactions, and the performance of the approach is studied through extensive simulation experiments. It is demonstr…
Mixed Non-Parametric and Parametric Estimation Techniques in R Package etasFLP for Earthquakes’ Description
2017
etasFLP is an R package which fits an epidemic type aftershock sequence (ETAS) model to an earthquake catalog; non-parametric background seismicity can be estimated through a forward predictive likelihood approach, while parametric components of triggered seismicity are estimated through maximum likelihood; estimation steps are alternated until convergence is obtained and for each event the probability of being a background event is estimated. The package includes options which allow its wide use. Methods for plot, summary and profile are defined for the main output class object. The paper provides examples of the package's use with description of the underlying R and Fortran routines.
Local Spatial Log-Gaussian Cox Processes for seismic data
2022
AbstractIn this paper, we propose the use of advanced and flexible statistical models to describe the spatial displacement of earthquake data. The paper aims to account for the external geological information in the description of complex seismic point processes, through the estimation of models with space varying parameters. A local version of the Log-Gaussian Cox processes (LGCP) is introduced and applied for the first time, exploiting the inferential tools in Baddeley (Spat Stat 22:261–295, 2017), estimating the model by the local Palm likelihood. We provide methods and approaches accounting for the interaction among points, typically described by LGCP models through the estimation of th…
A Note on Robust Intensity Estimation for Point Processes
1992
A robust intensity estimator based on independent marking is derived. A simulation study is made to convince that the new estimator works also in such cases where the usual estimators based on the distance methods do not work. Some truncated distributions are derived.
What we look at in paintings: A comparison between experienced and inexperienced art viewers
2016
How do people look at art? Are there any differences between how experienced and inexperienced art viewers look at a painting? We approach these questions by analyzing and modeling eye movement data from a cognitive art research experiment, where the eye movements of twenty test subjects, ten experienced and ten inexperienced art viewers, were recorded while they were looking at paintings. Eye movements consist of stops of the gaze as well as jumps between the stops. Hence, the observed gaze stop locations can be thought as a spatial point pattern, which can be modeled by a spatio-temporal point process. We introduce some statistical tools to analyze the spatio-temporal eye movement data, a…
Clustering of spatial point patterns
2006
Spatial point patterns arise as the natural sampling information in many problems. An ophthalmologic problem gave rise to the problem of detecting clusters of point patterns. A set of human corneal endothelium images is given. Each image is described by using a point pattern, the cell centroids. The main problem is to find groups of images corresponding with groups of spatial point patterns. This is interesting from a descriptive point of view and for clinical purposes. A new image can be compared with prototypes of each group and finally evaluated by the physician. Usual descriptors of spatial point patterns such as the empty-space function, the nearest distribution function or Ripley's K-…
Multitype spatial point patterns with hierarchical interactions.
2001
Multitype spatial point patterns with hierarchical interactions are considered. Here hierarchical interaction means directionality: points on a higher level of hierarchy affect the locations of points on the lower levels, but not vice versa. Such relations are common, for example, in ecological communities. Interacting point patterns are often modeled by Gibbs processes with pairwise interactions. However, these models are inherently symmetric, and the hierarchy can be acknowledged only when interpreting the results. We suggest the following in allowing the inclusion of the hierarchical structure in the model. Instead of regarding the pattern as a realization of a stationary multivariate po…
Inhomogeneous spatio-temporal point processes on linear networks for visitors’ stops data
2022
We analyse the spatio-temporal distribution of visitors' stops by touristic attractions in Palermo (Italy) using theory of stochastic point processes living on linear networks. We first propose an inhomogeneous Poisson point process model, with a separable parametric spatio-temporal first-order intensity. We account for the spatial interaction among points on the given network, fitting a Gibbs point process model with mixed effects for the purely spatial component. This allows us to study first-order and second-order properties of the point pattern, accounting both for the spatio-temporal clustering and interaction and for the spatio-temporal scale at which they operate. Due to the strong d…