Search results for "PolyUB"

showing 7 items of 7 documents

Tif1γ regulates the TGF-β1 receptor and promotes physiological aging of hematopoietic stem cells.

2014

The hematopoietic system declines with age. Myeloid-biased differentiation and increased incidence of myeloid malignancies feature aging of hematopoietic stem cells (HSCs), but the mechanisms involved remain uncertain. Here, we report that 4-mo-old mice deleted for transcription intermediary factor 1γ (Tif1γ) in HSCs developed an accelerated aging phenotype. To reinforce this result, we also show that Tif1γ is down-regulated in HSCs during aging in 20-mo-old wild-type mice. We established that Tif1γ controls TGF-β1 receptor (Tgfbr1) turnover. Compared with young HSCs, Tif1γ(-/-) and old HSCs are more sensitive to TGF-β signaling. Importantly, we identified two populations of HSCs specifical…

AgingMyeloidReceptor Transforming Growth Factor-beta Type IReceptors Cell SurfaceCell SeparationBiologyProtein Serine-Threonine KinasesTransforming Growth Factor beta1MiceSignaling Lymphocytic Activation Molecule Family Member 1Antigens CDmedicineAnimalsMyeloid CellsRNA MessengerPolyubiquitinTranscription factorCellular SenescenceRegulation of gene expressionMultidisciplinaryUbiquitinationhemic and immune systemsBiological SciencesHematopoietic Stem CellsCell biologyHematopoiesisHaematopoiesismedicine.anatomical_structurePhysiological AgingPhenotypeGene Expression RegulationSignal transductionStem cellCell agingReceptors Transforming Growth Factor betaSignal TransductionTranscription FactorsProceedings of the National Academy of Sciences of the United States of America
researchProduct

Enhanced autophagic-lysosomal activity and increased BAG3-mediated selective macroautophagy as adaptive response of neuronal cells to chronic oxidati…

2019

Oxidative stress and a disturbed cellular protein homeostasis (proteostasis) belong to the most important hallmarks of aging and of neurodegenerative disorders. The proteasomal and autophagic-lysosomal degradation pathways are key measures to maintain proteostasis. Here, we report that hippocampal cells selected for full adaptation and resistance to oxidative stress induced by hydrogen peroxide (oxidative stress-resistant cells, OxSR cells) showed a massive increase in the expression of components of the cellular autophagic-lysosomal network and a significantly higher overall autophagic activity. A comparative expression analysis revealed that distinct key regulators of autophagy are upregu…

0301 basic medicineClinical BiochemistryLFQ Label-free quantificationLETM Leucine zipper and EF-hand containing transmembrane proteinmedicine.disease_causeBiochemistryCHX Cycloheximide0302 clinical medicineBNIP3 Bcl-2 interacting protein 3RAPA RapamycinPIK3C3 Class III PI3‐kinasePhosphorylationlcsh:QH301-705.5Neuronslcsh:R5-920PolyUB PolyubiquitinChemistryBAG3OPA1 Optic atrophy 1TOR Serine-Threonine KinasesWIPI1 WD repeat domain phosphoinositide-interacting protein 1ATG Autophagy relatedTFEB Transcription factor EBCell biologyMitochondriasiRNA Small interfering RNADLP1 Dynamin-like protein 1LAMP1 Lysosomal‐associated membrane protein 1PURO Puromycinlcsh:Medicine (General)Protein homeostasisResearch PaperBafA1 Bafilomycin A1LAMP2 Lysosomal‐associated membrane protein 2Proteasome Endopeptidase ComplexRAB18 Member RAS oncogeneTUB TubulinLC3 Light chain 3 proteinOxidative phosphorylationBAG3CTSD Cathepsin DModels BiologicalCell Line03 medical and health sciencesDownregulation and upregulationMacroautophagymedicineAutophagyHumansAdaptationBAG1 Bcl-2-associated athanogene 1BECN1 Beclin1PI3K/AKT/mTOR pathwayAdaptor Proteins Signal TransducingTEM Transmission electron microscopyHsp70 Heat shock protein 70Organic ChemistryAutophagyAutophagosomesmTOR Mammalian target of rapamycinHsp70Oxidative Stress030104 developmental biologyProteostasislcsh:Biology (General)CV CanavanineBAG3 Bcl-2-associated athanogene 3MTT (3-(45-Dimethylthiazol-2-yl)-25-Diphenyltetrazolium Bromide)Apoptosis Regulatory ProteinsLysosomes030217 neurology & neurosurgeryOxidative stressRedox Biology
researchProduct

Ubiquitin and ubiquitination in cells from the marine sponge Geodia cydonium.

1994

Marine sponges, e.g. Geodia cydonium, have been intensively used to investigate the biochemical and molecular biological basis of cell-cell- and cell-matrix adhesion. It has been shown that a family of galactose-specific lectins, which are present in the extracellular space of G. cydonium, is a main component involved in cell-matrix adhesion in the sponge system. In the present study it is outlined that the purified 16-kDa lectin-1 binds to a 67-kDa membrane-associated protein. This lectin-binding protein undergoes mono- and diubiquitination after incubation of dissociated sponge cells with the homologous aggregation factor (AF), a molecule involved in cell-cell adhesion. The gene coding fo…

DNA ComplementaryBlotting WesternMolecular Sequence DataBiochemistryBiopolymersTandem repeatUbiquitinLectinsExtracellularCell AdhesionAnimalsAmino Acid SequenceRNA MessengerPolyubiquitinGeneUbiquitinsCells CulturedMessenger RNAbiologyBase SequenceSequence Homology Amino AcidChemistryMembrane ProteinsAdhesionbiology.organism_classificationBlotting NorthernCell biologyPoriferaSpongeGene Expression Regulationbiology.proteinFunction (biology)Biological chemistry Hoppe-Seyler
researchProduct

Depletion of polyubiquitin encoded by the UBI4 gene confers pleiotropic phenotype to Candida albicans cells.

2003

We have studied the roles of polyubiquitin in Candida albicans physiology. Heterologous expression of the C. albicans polyubiquitin (UBI4) gene in a ubi4 Saccharomyces cerevisiae strain suppressed the mutant phenotype (hypersensitivity to heat shock). A heterozygous strain UBI4/Deltaubi4::hisG, obtained following the ura-blaster procedure, was used to construct a conditional mutant using a pCaDis derivative plasmid. By serendipity we isolated the UBI4 conditional mutant as well as a UBI4 mutant containing a non-functional MET3 promoter. Depletion of polyubiquitin conferred pleiotropic effects to mutant cells: (i) a limited increased sensitivity to mild heat shock; (ii) increased formation o…

Saccharomyces cerevisiae ProteinsbiologyPhenotypic switchingMutantHyphaebiology.organism_classificationCell morphologyMicrobiologyMolecular biologyCorpus albicansPhenotypeTransformation GeneticCandida albicansGeneticsMorphogenesisUbiquitin CHeterologous expressionHeat shockCloning MolecularUbiquitin CCandida albicansPolyubiquitinPromoter Regions GeneticGene DeletionHeat-Shock ResponseFungal genetics and biology : FGB
researchProduct

A protein quality control pathway regulated by linear ubiquitination.

2019

Neurodegenerative diseases are characterized by the accumulation of misfolded proteins in the brain. Insights into protein quality control mechanisms to prevent neuronal dysfunction and cell death are crucial in developing causal therapies. Here, we report that various disease-associated protein aggregates are modified by the linear ubiquitin chain assembly complex (LUBAC). HOIP, the catalytic component of LUBAC, is recruited to misfolded Huntingtin in a p97/VCP-dependent manner, resulting in the assembly of linear polyubiquitin. As a consequence, the interactive surface of misfolded Huntingtin species is shielded from unwanted interactions, for example with the low complexity sequence doma…

MaleHuntingtinSp1 protein humanProtein aggregationHTT protein humanDeubiquitinating enzymegenetics [Huntington Disease]Micegenetics [Sp1 Transcription Factor]0302 clinical medicineUbiquitinpathology [Brain]Valosin Containing Proteincytology [Fibroblasts]pathology [Neurons]PolyubiquitinCells CulturedMice Knockout0303 health sciencesHuntingtin ProteinGeneral NeuroscienceNF-kappa Bgenetics [Huntingtin Protein]Middle AgedCell biologymetabolism [Polyubiquitin]pathology [Huntington Disease]metabolism [Neurons]metabolism [NF-kappa B]Protein foldingFemalemetabolism [Fibroblasts]Protein BindingSignal TransductionAdultmetabolism [Valosin Containing Protein]Sp1 Transcription Factorcytology [Embryo Mammalian]genetics [Valosin Containing Protein]BiologyGeneral Biochemistry Genetics and Molecular Biologymetabolism [Sp1 Transcription Factor]03 medical and health sciencesddc:570Gene silencingAnimalsHumansmetabolism [Huntington Disease]Protein Interaction Domains and MotifsMolecular Biologymetabolism [Embryo Mammalian]030304 developmental biologyAgedSp1 transcription factorGeneral Immunology and MicrobiologyUbiquitinationProteotoxicitymetabolism [Brain]Case-Control Studiesmetabolism [Huntingtin Protein]biology.proteinProtein Processing Post-Translational030217 neurology & neurosurgerygenetics [NF-kappa B]
researchProduct

NMR structure of a non-conjugatable, ADP-ribosylation associated, ubiquitin-like domain from Tetrahymena thermophila polyubiquitin locus.

2019

Abstract Background Ubiquitin-like domains (UbLs), in addition to being post-translationally conjugated to the target through the E1-E2-E3 enzymatic cascade, can be translated as a part of the protein they ought to regulate. As integral UbLs coexist with the rest of the protein, their structural properties can differ from canonical ubiquitin, depending on the protein context and how they interact with it. In this work, we investigate T.th-ubl5, a UbL present in a polyubiquitin locus of Tetrahymena thermophila, which is integral to an ADP-ribosyl transferase protein. Only one other co-occurrence of these two domains within the same protein has been reported. Methods NMR, multiple sequence al…

UBL DOMAINspektroskopiaGTPasePARKINBiochemistryPROTEIN BACKBONEACTIVATIONprotein-protein interaction0302 clinical medicineProtein-protein interactionUbiquitinmolekyylidynamiikkaNMR-spektroskopiaPolyubiquitinADP Ribose Transferases0303 health sciencesMultiple sequence alignmentbiologyFERM domainChemistryTetrahymenastructure-function relationshipFAMILYCell biologyRECEPTORSPost-translational modificationSignal TransductionBiophysicsSequence alignmentMolecular Dynamics SimulationUbiquitin-like domainsMECHANISMSProtein–protein interactionTetrahymena thermophila03 medical and health sciencesNMR spectroscopyADP-RibosylationubikitiinitMolecular BiologyNuclear Magnetic Resonance Biomolecular030304 developmental biologyMolecular dynamics simulationsStructure-function relationshipmolecular dynamics simulationsbiology.organism_classificationProtein Structure Tertiarypost-translational modificationProteasomeMOLECULAR-DYNAMICSbiology.protein1182 Biochemistry cell and molecular biologyproteiinitGTPASEProtein Processing Post-Translational030217 neurology & neurosurgeryFERM DOMAINBiochimica et biophysica acta. General subjects
researchProduct

UNDERSTANDING THE RELATIONSHIP BETWEEN NORMAL FUNCTION AND ABERRANT AGGREGATION: THE CASE OF ATAXIN-3

2020

Polyglutamine diseaseSpinocerebellar Ataxia type 3Ubiquitin.Protein aggregationAtaxin-3Polyubiquitin chain
researchProduct