Search results for "Polyelectrolyte"
showing 4 items of 214 documents
Sequestration of biogenic amines by alginic and fulvic acids.
2006
The interaction of natural (alginic and fulvic acids) and synthetic (polyacrylic acid 2.0 kDa) polyelectrolytes with some protonated polyamines [diamines: ethylendiamine, 1,4-diaminobutane (or putrescine), 1,5-diaminopentane (or cadaverine); triamines: N-(3-aminopropyl)-1,4diaminobutane (or spermidine), diethylenetriamine; tetramine: N.N'-bis(3-aminopropyl)-1,4-diaminobutane (or spermine); pentamine: tetraethylene-pentamine; hexamine: pentaethylenehexamine] was studied at T=25 degrees C by potentiometry and calorimetry. Measurements were performed without supporting electrolyte, in order to avoid interference, and results were reported at I=0 mol L(-1). For all the systems, the formation of…
Improvements in Rational Design Strategies of Inulin Derivative Polycation for siRNA Delivery.
2016
The advances of short interfering RNA (siRNA)-mediated therapy provide a powerful option for the treatment of many diseases, including cancer, by silencing the expression of targeted genes involved in the progression of the pathology. On this regard, a new pH-responsive polycation derived from inulin, Inulin-g-imidazole-g-diethylenetriamine (INU-IMI-DETA), was designed and employed to produce INU-IMI-DETA/siRNA "Inulin COmplex Nanoaggregates" (ICONs). The experimental results showed that INU-IMI-DETA exhibited strong cationic characteristics and high solubility in the pH range 3-5 and self-aggregation triggered by pH increase and physiological salt concentration. INU-IMI-DETA showed as well…
Complex species formation of Cu and Cd metal ions with polyacrylate, polymethacrylate and alginate ligands. Potentiometric investigation by ISE-H+ an…
2008
Calcium mediated polyelectrolyte adsorption on like-charged surfaces.
2011
International audience; Monte Carlo simulations within the primitive model of calcium-mediated adsorption of linear and comb polyelectrolytes onto like-charged surfaces are described, focusing on the effect of calcium and polyion concentrations as well as on the ion pairing between polymers and calcium ions. We use a combination of Monte Carlo simulations and experimental data from titration and calcium binding to quantify the ion pairing. The polymer adsorption is shown to occur as a result of surface overcharging by Ca2+ and ion pairing between charged monomers and Ca2+. In agreement with experimental observations, the simulations predict that the polymer adsorption isotherm goes through …