Search results for "Polyethylene Glycols"

showing 10 items of 260 documents

Gold nanostars coated with neutral and charged polyethylene glycols: A comparative study of in-vitro biocompatibility and of their interaction with S…

2015

Gold nanostars (GNS) have been coated with four different polyethylene glycols (PEGs) equipped with a -SH function for grafting on the gold surface. These PEGs have different chain lengths with average MW = 2000, 3000, 5000 and average number of -O-CH2-CH2 - units 44, 66, and 111, respectively. Two are neutral and two are terminated with -COOH and -NH2 functions, thus bearing negative and positive charges at physiological pH, thanks to the formation of carboxylate and ammonium groups. The negative charge of the GNS coated with PEG carboxylate has also been exploited to further coat the GNS with the PAH (polyallylamine hydrochloride) cationic polymer. Vitality tests have been carried out on …

Polyethylene glycolBiocompatibilityCell SurvivalMetal NanoparticlesPolyethylene glycolCell morphologyBiochemistryPolyethylene GlycolsInorganic Chemistrychemistry.chemical_compoundNeuroblastomaMicroscopy Electron TransmissionCell Line TumorPEG ratioOrganic chemistryHumansCarboxylatechemistry.chemical_classificationGold nanostarsMolecular StructureEndocytosiCationic polymerizationGold nanostarPolymerEndocytosisTwo-photon luminescenceNanomedicinechemistrySettore CHIM/09 - Farmaceutico Tecnologico ApplicativoBiocompatibilityGoldPolyallylamine hydrochlorideNuclear chemistry
researchProduct

Tamoxifen-loaded polymeric micelles: preparation, physico-chemical characterization and in vitro evaluation studies.

2004

Several samples of polymeric micelles, formed by amphiphilic derivatives of PHEA, obtained by grafting into polymeric backbone of PEGs and/or hexadecylamine groups (PHEA-PEG-C(16) and PHEA-C(16)) and containing different amount of Tamoxifen, were prepared. All Tamoxifen-loaded polymeric micelles showed to increase drug water solubility. TEM studies provided evidence of the formation of supramolecular core/shell architectures containing drug, in the nanoscopic range and with spherical shape. Samples with different amount of encapsulated Tamoxifen were subjected to in vitro cytotoxic studies in order to evaluate the effect of Tamoxifen micellization on cell growth inhibition. All samples of T…

Polymers and PlasticsAntineoplastic Agents HormonalPolymersSupramolecular chemistryBioengineeringMicellePolyethylene GlycolsBiomaterialsPlasmaDrug Delivery SystemsTamoxifen polymeric micelles polyaspartammideAmphiphileMaterials ChemistryOrganic chemistryHumansMicellesAqueous solutionMolecular StructureChemistryHydrogen-Ion ConcentrationTamoxifenMembraneSettore CHIM/09 - Farmaceutico Tecnologico ApplicativoDrug deliveryLiberationDrug carrierPeptidesBiotechnologyNuclear chemistryMacromolecular bioscience
researchProduct

Protein-Based Nanoparticles for the Delivery of Enzymes with Antibacterial Activity.

2018

Proteins represent a versatile biopolymer material for the preparation of nanoparticles due to their biocompatibility, biodegradability, and low immunogenicity. This study presents a protein-based nanoparticle system consisting of high surface PEGylated lysozyme polyethylene glycol-modified lysozyme (LYZmPEG ). This protein modification leads to a solubility switch, which allows a nanoparticle preparation using a mild double emulsion method without the need of surfactants. The method allows the encapsulation of large hydrophilic payloads inside of the protein-based nanoparticle system. Native lysozyme (LYZ) was chosen as payload because of its innate activity as natural antibiotic. The mild…

Polymers and PlasticsBiocompatibilityNanoparticle02 engineering and technologyengineering.material010402 general chemistryGram-Positive Bacteria01 natural sciencesPolyethylene Glycolschemistry.chemical_compoundMaterials ChemistryHumansSolubilityDrug CarriersChemistryOrganic ChemistryProteinsBiodegradation021001 nanoscience & nanotechnology0104 chemical sciencesAnti-Bacterial AgentsChemical engineeringengineeringNanoparticlesEmulsionsMuramidaseBiopolymerLysozyme0210 nano-technologyDrug carrierAntibacterial activityHydrophobic and Hydrophilic InteractionsMacromolecular rapid communications
researchProduct

PEGYLATED POLYASPARTAMIDE–POLYLACTIDE BASED NANOPARTICLES PENETRATING CYSTIC FIBROSIS ARTIFICIAL MUCUS

2016

Here, the preparation of mucus-penetrating nanoparticles for pulmonary administration of ibuprofen in patients with cystic fibrosis is described. A fluorescent derivative of α,β-poly(N-2-hydroxyethyl)-D,L-aspartamide is synthesized by derivatization with rhodamine, polylactide, and poly(ethylene glycol), to obtain polyaspartamide− polylactide derivatives with different degrees of pegylation. Starting from these copolymers, fluorescent nanoparticles with different poly(ethylene glycol) content, empty and loaded with ibuprofen, showed spherical shape, colloidal size, slightly negative ζ potential, and biocompatibility toward human bronchial epithelial cells. The high surface poly(ethylene gly…

Polymers and PlasticsBiocompatibilityPolyestersαL-aspartamideNanoparticleBioengineeringIbuprofen02 engineering and technologyRespiratory Mucosa010402 general chemistry01 natural sciencesCell LinePolyethylene GlycolsBiomaterialsRhodaminecystic fibrosischemistry.chemical_compoundpolymeric nanoparticles cystic fibrosis αβ-poly(N-2-hydroxyethyl)-DL-aspartamideMaterials ChemistryCopolymerOrganic chemistryHumansDerivatizationβ-poly(N-2-hydroxyethyl)-Dpolymeric nanoparticles; cystic fibrosis; α; β-poly(N-2-hydroxyethyl)-D; L-aspartamide021001 nanoscience & nanotechnologyMucus0104 chemical sciencesMucuspolymeric nanoparticleschemistrySettore CHIM/09 - Farmaceutico Tecnologico ApplicativoPEGylationNanoparticles0210 nano-technologyPeptidesEthylene glycolNuclear chemistry
researchProduct

Acid‐Labile Amphiphilic PEO‐ b ‐PPO‐ b ‐PEO Copolymers: Degradable Poloxamer Analogs

2016

Poly ((ethylene oxide)-b-(propylene oxide)-b-(ethylene oxide)) triblock copolymers commonly known as poloxamers or Pluronics constitute an important class of nonionic, biocompatible surfactants. Here, a method is reported to incorporate two acid-labile acetal moieties in the backbone of poloxamers to generate acid-cleavable nonionic surfactants. Poly(propylene oxide) is functionalized by means of an acetate-protected vinyl ether to introduce acetal units. Three cleavable PEO-PPO-PEO triblock copolymers (Mn,total = 6600, 8000, 9150 g·mol(-1) ; Mn,PEO = 2200, 3600, 4750 g·mol(-1) ) have been synthesized using anionic ring-opening polymerization. The amphiphilic copolymers exhibit narrow molec…

Polymers and PlasticsBiodegradable Plastics02 engineering and technology010402 general chemistry01 natural sciencesPolyethylene Glycolschemistry.chemical_compoundPolymer chemistryAmphiphileMaterials ChemistrymedicineCopolymerSurface TensionPropylene oxideEthylene oxideHydrolysisOrganic ChemistryVinyl etherPoloxamer021001 nanoscience & nanotechnology0104 chemical sciencesMiniemulsionchemistryPolymerization0210 nano-technologymedicine.drugMacromolecular Rapid Communications
researchProduct

Amphiphilic Copolymers Based on Poly[(hydroxyethyl)-d,l-aspartamide]: A Suitable Functional Coating for Biocompatible Gold Nanostars

2013

Novel amphiphilic copolymers have been synthesized based on a biocompatible poly(hydroxyethylaspartamide) (PHEA) backbone, bearing both anchoring groups for gold nanoparticles, such as thiols and disulfide, and conjugable moieties, such as amino groups, the latter as points suitable for appending further functional agents. The strategy was to functionalize α,β-poly[(N-2- hydroxyethyl)-d,l-aspartamide] (PHEA) with PEG2000-NH2 and with ethylenediamine (EDA) obtaining a partially pegylated copolymer with a large number of pendant primary amino groups. A fraction of the latter was conjugated with molecules bearing terminal thiol moieties such as 12-mercaptododecanoic acid (MDA) and disulfide gr…

Polymers and PlasticsCell SurvivalMetal NanoparticlesBioengineeringEthylenediamineengineering.materialConjugated systemPolyethylene GlycolsBiomaterialsSurface-Active Agentschemistry.chemical_compoundCoated Materials BiocompatibleCoatingCell Line TumorMaterials TestingAmphiphilePolymer chemistryMaterials ChemistryCopolymerHumansMoleculePoly(hydroxyethyl)-DL-aspartamideParticle Sizechemistry.chemical_classificationAmphiphilic copolymersgold nanostarlipoic acidEthylenediamineschemistrySettore CHIM/09 - Farmaceutico Tecnologico ApplicativoColloidal goldThiolengineeringGoldPeptidesgold nanoparticleBiomacromolecules
researchProduct

Effect of Core-Crosslinking on Protein Corona Formation on Polymeric Micelles.

2021

Most nanomaterials acquire a protein corona upon contact with biological fluids. The magnitude of this effect is strongly dependent both on surface and structure of the nanoparticle. To define the contribution of the internal nanoparticle structure, protein corona formation of block copolymer micelles with poly(N-2-hydroxypropylmethacrylamide) (pHPMA) as hydrophilic shell, which are crosslinked-or not-in the hydrophobic core is comparatively analyzed. Both types of micelles are incubated with human blood plasma and separated by asymmetrical flow field-flow fractionation (AF4). Their size is determined by dynamic light scattering and proteins within the micellar fraction are characterized by…

Polymers and PlasticsChemical PhenomenaLightPolymersNanoparticleBioengineeringProtein Corona02 engineering and technology010402 general chemistry01 natural sciencesMicelleMass SpectrometryPolyethylene GlycolsBiomaterialsCorona (optical phenomenon)PlasmaDynamic light scatteringMaterials ChemistryCopolymerHumansScattering RadiationChromatography High Pressure LiquidMicellesGel electrophoresisChemistry021001 nanoscience & nanotechnologyBlood proteins0104 chemical sciencesNanostructuresCross-Linking ReagentsBiophysicsProtein CoronaAdsorption0210 nano-technologyHydrophobic and Hydrophilic InteractionsBiotechnologyMacromolecular bioscience
researchProduct

Aminal Protection of Epoxide Monomer Permits the Introduction of Multiple Secondary Amine Moieties at Poly(ethylene glycol).

2019

In contrast to acetal groups, aminal moieties are almost unknown in polymer chemistry. The aminal-protected isopropyl-hexahydro-pyrimidine glycidyl amine (PyGA) for the anionic ring-opening polymerization (AROP) is introduced. The monomer is prepared in a two-step synthesis and can be polymerized in a well-controlled manner under AROP conditions. Several poly(ethylene glycol) block and triblock copolymers are synthesized in a molecular weight range from 2 700 to 11 400 g mol-1 with up to 11 mol% PyGA. The molecular weight distributions are monomodal with low dispersity (Đ = Mw /Mn ) below 1.2. After the polymerization, the acid-labile hexahydro-pyrimidine rings can be conveniently cleaved i…

Polymers and PlasticsDispersityEpoxide02 engineering and technology010402 general chemistry01 natural sciencesPolyethylene GlycolsPolymerizationchemistry.chemical_compoundPolymer chemistryMaterials ChemistryCopolymerAminesMolecular StructureOrganic ChemistryAcetal021001 nanoscience & nanotechnology0104 chemical sciencesMolecular WeightMonomerchemistryPolymerizationAminalEpoxy Compounds0210 nano-technologyEthylene glycolMacromolecular rapid communications
researchProduct

Synthesis of multiarm star poly(glycerol)-block-poly(2-hydroxyethyl methacrylate).

2006

Well-defined multiarm star block copolymers poly(glycerol)-b-poly(2-hydroxyethyl methacrylate) (PG-b-PHEMA) with an average of 56, 66, and 90 PHEMA arms, respectively, have been prepared by atom transfer radical polymerization (ATRP) of HEMA in methanol by a core-first strategy. The hyperbranched macroinitiators employed were prepared on the basis of well-defined hyperbranched polyglycerol by esterification with 2-bromoisobutyryl bromide. Polydispersites M(w)/M(n) of the new multiarm stars were in the range of 1.11-1.82. Unexpectedly, with the combination of CuCl/CuBr(2)/2,2'-bipyridyl as catalyst, the polymerization conversion can be driven to maximum values of 79%. The control of CuCl cat…

Polymers and PlasticsMolecular StructureAtom-transfer radical-polymerizationMacromolecular SubstancesPolymersDispersityBioengineeringSolution polymerizationBiocompatible MaterialsMethacrylateCatalysisCatalysisPolyethylene GlycolsBiomaterialschemistry.chemical_compoundKineticschemistryPolymerizationModels ChemicalBromidePolymer chemistryMaterials ChemistryCopolymerMethacrylatesBiomacromolecules
researchProduct

Size-dependent knockdown potential of siRNA-loaded cationic nanohydrogel particles.

2014

To overcome the poor pharmacokinetic conditions of short double-stranded RNA molecules in RNA interference therapies, cationic nanohydrogel particles can be considered as alternative safe and stable carriers for oligonucleotide delivery. For understanding key parameters during this process, two different types of well-defined cationic nanohydrogel particles were synthesized, which provided nearly identical physicochemical properties with regards to their material composition and resulting siRNA loading characteristics. Yet, according to the manufacturing process using amphiphilic reactive ester block copolymers of pentafluorophenyl methacrylate (PFPMA) and tri(ethylene glycol)methyl ether m…

Polymers and PlasticsNanogelsBioengineeringEtherMethacrylateProtein Structure SecondaryPolyethylene GlycolsBiomaterialschemistry.chemical_compoundCationsAmphiphilePolymer chemistryMaterials ChemistryCopolymerHumansPolyethyleneimineParticle SizeRNA Small InterferingRNA Double-StrandedOligonucleotideCationic polymerizationHydrogelschemistryChemical engineeringGene Knockdown TechniquesEthylene glycolNanogelHeLa CellsBiomacromolecules
researchProduct