Search results for "Polyploïdie"
showing 2 items of 2 documents
A Peptidoglycan-Remodeling Enzyme Is Critical for Bacteroid Differentiation in Bradyrhizobium spp. During Legume Symbiosis.
2016
International audience; In response to the presence of compatible rhizobium bacteria, legumes form symbiotic organs called nodules on their roots. These nodules house nitrogen-fixing bacteroids that are a differentiated form of the rhizobium bacteria. In some legumes, the bacteroid differentiation comprises a dramatic cell enlargement, polyploidization, and other morphological changes. Here, we demonstrate that a peptidoglycan-modifying enzyme in Bradyrhizobium strains, a DD-carboxypeptidase that contains a peptidoglycan-binding SPOR domain, is essential for normal bacteroid differentiation in Aeschynomene species. The corresponding mutants formed bacteroids that are malformed and hypertrop…
Ploidy manipulation and citrus breeding, genetics and genomics
2020
Polyploidy appears to have played a limited role in citrus germplasm evolution. However, today, ploidy manipulation is an important component of citrus breeding strategies. For varieties, the main objective is to develop triploid seedless cultivars. For rootstock, the aim is to cumulate interesting traits in tetraploid hybrids and to improve adaptation to biotic and abiotic stresses. This chapter starts with a review of the recent knowledge acquired on the natural mechanisms of citrus polyploidization and tetraploid meiosis. Chromosome doubling of nucellar cells is frequent in apomictic citrus and results in tetraploid seedling production. Unreduced gametes are also frequently produced, mai…