Search results for "Porters"

showing 10 items of 233 documents

C 4 -Dicarboxylate Utilization in Aerobic and Anaerobic Growth

2016

C 4 -dicarboxylates and the C 4 -dicarboxylic amino acid l -aspartate support aerobic and anaerobic growth of Escherichia coli and related bacteria. In aerobic growth, succinate, fumarate, D - and L -malate, L -aspartate, and L -tartrate are metabolized by the citric acid cycle and associated reactions. Because of the interruption of the citric acid cycle under anaerobic conditions, anaerobic metabolism of C 4 -dicarboxylates depends on fumarate reduction to succinate (fumarate respiration). In some related bacteria (e.g., Klebsiella ), utilization of C 4 -dicarboxylates, such as tartrate, is independent of fumarate respiration and uses a Na + -dependent membrane-bound oxaloacetate decarbo…

0301 basic medicineCarboxy-LyasesCitric Acid Cycle030106 microbiologySuccinic AcidContext (language use)medicine.disease_causeMicrobiology03 medical and health sciencesFumaratesKlebsiellaEscherichia colimedicineHumansDicarboxylic AcidsAnaerobiosisEscherichia coliDicarboxylic Acid TransportersbiologyEscherichia coli ProteinsMembrane Transport ProteinsBiological TransportGene Expression Regulation BacterialMetabolismFumarate reductasebiology.organism_classificationAerobiosisCitric acid cycle030104 developmental biologyOxaloacetate decarboxylaseBiochemistryAnaerobic exerciseBacteriaEcoSal Plus
researchProduct

A Physiology-Based Model of Human Bile Acid Metabolism for Predicting Bile Acid Tissue Levels After Drug Administration in Healthy Subjects and BRIC …

2019

Drug-induced liver injury (DILI) is a matter of concern in the course of drug development and patient safety, often leading to discontinuation of drug-development programs or early withdrawal of drugs from market. Hepatocellular toxicity or impairment of bile acid (BA) metabolism, known as cholestasis, are the two clinical forms of DILI. Whole-body physiology-based modelling allows a mechanistic investigation of the physiological processes leading to cholestasis in man. Objectives of the present study were: (1) the development of a physiology-based model of the human BA metabolism, (2) population-based model validation and characterisation, and (3) the prediction and quantification of alter…

0301 basic medicineEXPRESSIONPBPKLIVERmedicine.drug_classPhysiologyBenign Recurrent Intrahepatic CholestasisPopulationBIOMARKERScomputational modellingPhysiologyDIAGNOSISlcsh:Physiology03 medical and health scienceschemistry.chemical_compoundPHARMACOKINETIC MODEL0302 clinical medicineCholestasisPhysiology (medical)Glycochenodeoxycholic acidMedicineddc:610educationEnterohepatic circulationKINETICSOriginal ResearchLiver injuryINTRAHEPATIC CHOLESTASISbile acidseducation.field_of_studyBile acidlcsh:QP1-981business.industryBRIC type 2medicine.diseaseTRANSPORTERS3. Good health030104 developmental biologychemistryToxicitySIMULATION030211 gastroenterology & hepatologyENTEROHEPATIC CIRCULATIONDILIbusinesscholestasisFrontiers in Physiology
researchProduct

Where do we go from here? Membrane protein research beyond the structure-function horizon.

2018

0301 basic medicineHorizon (archaeology)ChemistryResearchStructure functionCryoelectron MicroscopyLipid BilayersBiophysicsMembrane ProteinsCell BiologyBiochemistryChemistry Techniques Analytical03 medical and health sciences030104 developmental biologyApplied mathematicsAnimalsHumansATP-Binding Cassette TransportersForecastingBiochimica et biophysica acta. Biomembranes
researchProduct

Nonacidic Farnesoid X Receptor Modulators.

2017

As a cellular bile acid sensor, farnesoid X receptor (FXR) participates in regulation of bile acid, lipid and glucose homeostasis, and liver protection. Clinical results have validated FXR as therapeutic target in hepatic and metabolic diseases. To date, potent FXR agonists share a negatively ionizable function that might compromise their pharmacokinetic distribution and behavior. Here we report the development and characterization of a high-affinity FXR modulator not comprising an acidic residue.

0301 basic medicineMalemedicine.drug_classPyridinesPeroxisome proliferator-activated receptorReceptors Cytoplasmic and NuclearATP-binding cassette transporterCholesterol 7 alpha-hydroxylase01 natural sciencesRats Sprague-Dawley03 medical and health sciencesStructure-Activity RelationshipDrug StabilityDrug DiscoverymedicineGlucose homeostasisAnimalsHumansPPAR alphaReceptorCholesterol 7-alpha-HydroxylaseATP Binding Cassette Transporter Subfamily B Member 11chemistry.chemical_classificationBile acid010405 organic chemistryChemistryHEK 293 cellsImidazolesMembrane Transport ProteinsHep G2 Cells0104 chemical sciencesMolecular Docking SimulationZolpidem030104 developmental biologyHEK293 CellsBiochemistryMolecular MedicineFarnesoid X receptorATP-Binding Cassette TransportersSterol Regulatory Element Binding Protein 1HeLa CellsJournal of medicinal chemistry
researchProduct

Diverse relations between ABC transporters and lipids: An overview.

2016

It was first discovered in 1992 that P-glycoprotein (Pgp, ABCB1), an ATP binding cassette (ABC) transporter, can transport phospholipids such as phosphatidylcholine, -ethanolamine and -serine as well as glucosylceramide and glycosphingolipids. Subsequently, many other ABC transporters were identified to act as lipid transporters. For substrate transport by ABC transporters, typically a classic, alternating access model with an ATP-dependent conformational switch between a high and a low affinity substrate binding site is evoked. Transport of small hydrophilic substrates can easily be imagined this way, as the molecule can in principle enter and exit the transporter in the same orientation. …

0301 basic medicineModels MolecularATP Binding Cassette Transporter Subfamily BBiophysicsGene ExpressionATP-binding cassette transporterPhosphatidylserinesBiologyBiochemistrySubstrate SpecificitySerine03 medical and health sciencesLipid translocationHumansProtein IsoformsBinding siteLipid bilayerLipid TransportATP-binding domain of ABC transportersBinding SitesPhosphatidylethanolaminesFatty AcidsTransporterBiological TransportCell BiologyCell biology030104 developmental biologyBiochemistryPhosphatidylcholineslipids (amino acids peptides and proteins)Protein BindingBiochimica et biophysica acta. Biomembranes
researchProduct

Efficiency of Target Larvicides Is Conditioned by ABC-Mediated Transport in the Zoonotic Nematode Anisakis pegreffii

2018

Anisakiasis is among the most significant emerging foodborne parasitoses contracted through consumption of thermally unprocessed seafood harboring infective Anisakis species larvae. The efficacy of the currently applied anthelminthic therapy in humans and in model organisms has not proven sufficient, so alternative solutions employing natural compounds combined with chemical inhibitors should be explored. By testing toxicity of the natural monoterpenes nerolidol and farnesol and the conventional anthelminthics abamectin and levamisole in the presence/absence of MK-571 and Valspodar, which inhibit the ABC transporter proteins multidrug resistance protein (MRP-like) and P-glycoprotein (P-gp),…

0301 basic medicineNematodaAnisakis antiparasitic agents multidrug resistance proteinsAnisakiATP-binding cassette transporterAnisakiasisAnisakisMicrobiology03 medical and health scienceschemistry.chemical_compound0302 clinical medicineMechanisms of ResistanceTubulinSettore AGR/20 - ZoocoltureAnimalsHumansPharmacology (medical)ATP Binding Cassette Transporter Subfamily B Member 1Settore BIO/06 - Anatomia Comparata E CitologiaNerolidolPharmacologybiologyAntiparasitic AgentsTransporterFarnesolbiology.organism_classificationAnisakis030104 developmental biologyInfectious DiseasesNematodechemistryLevamisole030220 oncology & carcinogenesisLarvaAbamectinATP-Binding Cassette TransportersEffluxABC transporterSesquiterpenes
researchProduct

Involvement of Thyroid Hormones in Brain Development and Cancer

2021

Simple Summary Development and function of the mammalian brain clearly require precise regulation of gene expression at both the transcriptional and post-transcriptional level. Thyroid hormones have been recognized to play a fundamental role in these processes, by acting at multiple levels and in different brain cell types, through direct effects on transcription, mediated by nuclear receptors, and also by triggering transduction pathways at the plasma membrane. At the same time, due to their effects on proliferation, differentiation, and cell metabolism, thyroid hormones may have a critical role in different kinds of cancer, including brain cancer. Abstract The development and maturation o…

0301 basic medicineNervous systemCancer ResearchNuclear and membrane TH receptorsThyroid hormonesReviewBiologyBrain cancer03 medical and health sciences0302 clinical medicineSettore BIO/10 - BiochimicamedicineSettore BIO/06 - Anatomia Comparata E CitologiaRC254-282Regulation of gene expressionDeiodinasesThyroidNeoplasms. Tumors. Oncology. Including cancer and carcinogensCancerTH transportersmedicine.diseaseBrain developmentChromatinCell biology030104 developmental biologymedicine.anatomical_structureOncologyNuclear receptorTH carriersThyroid function030217 neurology & neurosurgeryHormoneCancers
researchProduct

Lactate as a Metabolite and a Regulator in the Central Nervous System

2016

More than two hundred years after its discovery, lactate still remains an intriguing molecule. Considered for a long time as a waste product of metabolism and the culprit behind muscular fatigue, it was then recognized as an important fuel for many cells. In particular, in the nervous system, it has been proposed that lactate, released by astrocytes in response to neuronal activation, is taken up by neurons, oxidized to pyruvate and used for synthesizing acetyl-CoA to be used for the tricarboxylic acid cycle. More recently, in addition to this metabolic role, the discovery of a specific receptor prompted a reconsideration of its role, and lactate is now seen as a sort of hormone, even invol…

0301 basic medicineNervous systemlactate transporterCentral nervous systemReviewBiologyBlood–brain barrierlactate receptorsNeuroprotectionCatalysislcsh:ChemistryInorganic Chemistry03 medical and health sciences0302 clinical medicineSettore BIO/10 - Biochimicalactate receptormedicineAnimalsHumanslactate transportersPhysical and Theoretical ChemistryReceptorExerciselcsh:QH301-705.5Molecular BiologySpectroscopyOrganic ChemistryNeurodegenerationlactic acidBrainGeneral MedicineMetabolismblood-brain barriermedicine.diseaseComputer Science ApplicationsCitric acid cycle030104 developmental biologymedicine.anatomical_structurelcsh:Biology (General)lcsh:QD1-999Biochemistrybrain metabolismActic acidexercise and lactateEnergy MetabolismNeuroscience030217 neurology & neurosurgerySignal Transductionactic acid; brain metabolism; lactate transporters; blood-brain barrier; lactate receptors; exercise and lactate
researchProduct

Pharmacogenomics of Scopoletin in Tumor Cells

2016

Drug resistance and the severe side effects of chemotherapy necessitate the development of novel anticancer drugs. Natural products are a valuable source for drug development. Scopoletin is a coumarin compound, which can be found in several Artemisia species and other plant genera. Microarray-based RNA expression profiling of the NCI cell line panel showed that cellular response of scopoletin did not correlate to the expression of ATP-binding cassette (ABC) transporters as classical drug resistance mechanisms (ABCB1, ABCB5, ABCC1, ABCG2). This was also true for the expression of the oncogene EGFR and the mutational status of the tumor suppressor gene, TP53. However, mutations in the RAS onc…

0301 basic medicinePharmaceutical ScienceATP-binding cassette transporterDrug resistancePharmacologycoumarinAnalytical Chemistrychemistry.chemical_compound0302 clinical medicineNeoplasmsDrug DiscoveryABC-transportermicroarraysNF-kappa BABCB5Drug Resistance MultipleGene Expression Regulation NeoplasticMolecular Docking SimulationDrug developmentChemistry (miscellaneous)030220 oncology & carcinogenesisherbal medicineMolecular MedicineSignal TransductionTumor suppressor geneProtein Array AnalysisBiologyArticlelcsh:QD241-44103 medical and health scienceslcsh:Organic chemistrymultidrug resistanceCell Line TumorScopoletinHumansPhysical and Theoretical ChemistryTranscription factorScopoletinOncogenePlant ExtractsOrganic ChemistryTranscription Factor RelAphytotherapy030104 developmental biologyArtemisiachemistryDrug Resistance NeoplasmPharmacogeneticsCancer researchABC-transporter; cluster analysis; coumarin; herbal medicine; microarrays; multidrug resistance; phytotherapyATP-Binding Cassette Transporterscluster analysisMolecules
researchProduct

Treatment of Multidrug-Resistant Leukemia Cells by Novel Artemisinin-, Egonol-, and Thymoquinone-Derived Hybrid Compounds

2018

Two major obstacles for successful cancer treatment are the toxicity of cytostatics and the development of drug resistance in cancer cells during chemotherapy. Acquired or intrinsic drug resistance is responsible for almost 90% of treatment failure. For this reason, there is an urgent need for new anticancer drugs with improved efficacy against cancer cells, and with less toxicity on normal cells. There are impressive examples demonstrating the success of natural plant compounds to fight cancer, such as Vinca alkaloids, taxanes, and anthracyclines. Artesunic acid (ARTA), a drug for malaria treatment, also exerts cytotoxic activity towards cancer cells. Multidrug resistance often results fro…

0301 basic medicinePharmaceutical ScienceDrug resistancePharmacologychemotherapyAnalytical Chemistry0302 clinical medicineartemisinin egonol thymoquinone hybridsDrug DiscoveryBenzoquinonesCytotoxic T cellCytotoxicitymedia_commonLeukemiaChemistryNaturwissenschaftliche FakultätArtemisininsDrug Resistance MultipleGene Expression Regulation NeoplasticMolecular Docking SimulationChemistry (miscellaneous)030220 oncology & carcinogenesisddc:540multi-drug resistanceMolecular Medicinemedicine.drugDrugCell Survivalmedia_common.quotation_subjectAntineoplastic AgentsArticlelcsh:QD241-44103 medical and health scienceslcsh:Organic chemistryCell Line TumormedicineHumansDoxorubicinPhysical and Theoretical Chemistrychemotherapy; multi-drug resistance; artemisinin egonol thymoquinone hybridsCell ProliferationOrganic ChemistryCancerSuccinatesmedicine.diseaseMultiple drug resistance030104 developmental biologyDoxorubicinDrug Resistance NeoplasmCancer cellATP-Binding Cassette TransportersMolecules
researchProduct