Search results for "Position operator"

showing 10 items of 25 documents

Bounded compositions on scaling invariant Besov spaces

2012

For $0 < s < 1 < q < \infty$, we characterize the homeomorphisms $��: \real^n \to \real^n$ for which the composition operator $f \mapsto f \circ ��$ is bounded on the homogeneous, scaling invariant Besov space $\dot{B}^s_{n/s,q}(\real^n)$, where the emphasis is on the case $q\not=n/s$, left open in the previous literature. We also establish an analogous result for Besov-type function spaces on a wide class of metric measure spaces as well, and make some new remarks considering the scaling invariant Triebel-Lizorkin spaces $\dot{F}^s_{n/s,q}(\real^n)$ with $0 < s < 1$ and $0 < q \leq \infty$.

Mathematics::Functional AnalysisQuasiconformal mappingPure mathematics46E35 30C65 47B33Function spaceComposition operator010102 general mathematicsta11116. Peace & justiceTriebel–Lizorkin space01 natural sciencesFunctional Analysis (math.FA)Mathematics - Functional AnalysisMathematics - Classical Analysis and ODEsBounded function0103 physical sciencesClassical Analysis and ODEs (math.CA)FOS: MathematicsBesov space010307 mathematical physics0101 mathematicsInvariant (mathematics)ScalingAnalysisMathematicsJournal of Functional Analysis
researchProduct

RPA in wavefunction representation

1992

The RPA is formulated in subspaces of coordinate-like and momentum-like I ph operators. This allows to embed a large class of approximative schemes into a generalized RPA treatment. We give a detailed formulation in terms of wavefunctions in coordinate space which is ideally suited to practical programming. In particular, we work out the reduction to spherical tensors in the case of spherical symmetry which is most often the starting point in finite Fermion systems.

PhysicsMomentum operatorQuantum mechanicsPosition operatorGeneral Physics and AstronomyCircular symmetryCoordinate spaceWave functionRepresentation (mathematics)Random phase approximationLinear subspaceMathematical physicsAnnalen der Physik
researchProduct

Coordinate representation for non Hermitian position and momentum operators

2017

In this paper we undertake an analysis of the eigenstates of two non self-adjoint operators $\hat q$ and $\hat p$ similar, in a suitable sense, to the self-adjoint position and momentum operators $\hat q_0$ and $\hat p_0$ usually adopted in ordinary quantum mechanics. In particular we discuss conditions for these eigenstates to be {\em biorthogonal distributions}, and we discuss few of their properties. We illustrate our results with two examples, one in which the similarity map between the self-adjoint and the non self-adjoint is bounded, with bounded inverse, and the other in which this is not true. We also briefly propose an alternative strategy to deal with $\hat q$ and $\hat p$, based …

PhysicsQuantum PhysicsSimilarity (geometry)010308 nuclear & particles physicsGeneral MathematicsGeneral EngineeringFOS: Physical sciencesGeneral Physics and AstronomyInverseMathematical Physics (math-ph)01 natural sciencesHermitian matrixMomentumPosition (vector)Settore MAT/05 - Analisi MatematicaBounded functionBiorthogonal system0103 physical sciencesposition operators generalized eigenvectors quasi*-algebrasQuantum Physics (quant-ph)010306 general physicsSettore MAT/07 - Fisica MatematicaEigenvalues and eigenvectorsMathematical PhysicsMathematical physics
researchProduct

Spectrum of composition operators on S(R) with polynomial symbols

2020

Abstract We study the spectrum of operators in the Schwartz space of rapidly decreasing functions which associate each function with its composition with a polynomial. In the case where this operator is mean ergodic we prove that its spectrum reduces to {0}, while the spectrum of any non mean ergodic composition operator with a polynomial always contains the closed unit disc except perhaps the origin. We obtain a complete description of the spectrum of the composition operator with a quadratic polynomial or a cubic polynomial with positive leading coefficient.

PolynomialPure mathematicsComposition operatorGeneral Mathematics010102 general mathematicsSpectrum (functional analysis)Quadratic function01 natural sciencesOperator (computer programming)Schwartz space0103 physical sciencesErgodic theory010307 mathematical physics0101 mathematicsCubic functionMathematicsAdvances in Mathematics
researchProduct

Boundedness of composition operators in holomorphic Hölder type spaces

2021

Pure mathematicsComposition operatorGeneral MathematicsGeneral EngineeringHolomorphic functionType (model theory)Composition (combinatorics)Modulus of continuityMathematicsMathematical Methods in the Applied Sciences
researchProduct

Phantom iterates of continuous functions

1985

Pure mathematicsComposition operatorIterated functionCommutative algebraImaging phantomMathematicsIteration theory
researchProduct

On compactness of the difference of composition operators

2004

Abstract Let φ and ψ be analytic self-maps of the unit disc, and denote by C φ and C ψ the induced composition operators. The compactness and weak compactness of the difference T = C φ − C ψ are studied on H p spaces of the unit disc and L p spaces of the unit circle. It is shown that the compactness of T on H p is independent of p ∈[1,∞). The compactness of T on L 1 and M (the space of complex measures) is characterized, and examples of φ and ψ are constructed such that T is compact on H 1 but non-compact on L 1 . Other given results deal with L ∞ , weakly compact counterparts of the previous results, and a conjecture of J.E. Shapiro.

Pure mathematicsConjectureComposition operatorApplied Mathematics010102 general mathematicsMathematical analysiseducationdifferenceComposition (combinatorics)Space (mathematics)01 natural sciences010101 applied mathematicsCompact spaceUnit circlecomposition operator111 Mathematicscompactness0101 mathematicsUnit (ring theory)Aleksandrov measureAnalysisMathematics
researchProduct

Mean ergodic composition operators on Banach spaces of holomorphic functions

2016

[EN] Given a symbol cc, i.e., a holomorphic endomorphism of the unit disc, we consider the composition operator C-phi(f) = f circle phi defined on the Banach spaces of holomorphic functions A(D) and H-infinity(D). We obtain different conditions on the symbol phi which characterize when the composition operator is mean ergodic and uniformly mean ergodic in the corresponding spaces. These conditions are related to the asymptotic behavior of the iterates of the symbol. Finally, we deal with some particular case in the setting of weighted Banach spaces of holomorphic functions.

Pure mathematicsEndomorphismComposition operatorBanach spaceHolomorphic functionDisc algebra01 natural sciencesMean ergodic operatorFOS: Mathematics47B33 47A35 46E15Ergodic theoryComplex Variables (math.CV)0101 mathematicsMathematicsMathematics::Functional AnalysisDenjoy Wolff pointMathematics - Complex VariablesMathematics::Complex Variables010102 general mathematicsComposition (combinatorics)Functional Analysis (math.FA)Mathematics - Functional Analysis010101 applied mathematicsIterated functionComposition operatorMATEMATICA APLICADAUnit (ring theory)AnalysisJournal of Functional Analysis
researchProduct

Königs eigenfunction for composition operators on Bloch and H∞ type spaces

2017

Abstract We discuss when the Konigs eigenfunction associated with a non-automorphic selfmap of the complex unit disc that fixes the origin belongs to Banach spaces of holomorphic functions of Bloch and H ∞ type. In the latter case, our characterization answers a question of P. Bourdon. Some spectral properties of composition operators on H ∞ for unbounded Konigs eigenfunction are obtained.

Pure mathematicsMathematics::Complex VariablesComposition operatorApplied Mathematics010102 general mathematicsMathematical analysisBanach spaceHolomorphic functionComposition (combinatorics)EigenfunctionType (model theory)Characterization (mathematics)01 natural sciences010101 applied mathematicsComputer Science::Discrete Mathematics0101 mathematicsUnit (ring theory)AnalysisMathematicsJournal of Mathematical Analysis and Applications
researchProduct

WEAKLY COMPACT HOMOMORPHISMS BETWEEN SMALL ALGEBRAS OF ANALYTIC FUNCTIONS

2001

The weak compactness of the composition operator CΦ(f) = f ○ Φ acting on the uniform algebra of analytic uniformly continuous functions on the unit ball of a Banach space with the approximation property is characterized in terms of Φ. The relationship between weak compactness and compactness of these composition operators and general homomorphisms is also discussed.

Pure mathematicsUniform continuityCompact spaceApproximation propertyComposition operatorComputer Science::Information RetrievalGeneral MathematicsUniform algebraBanach spaceNon-analytic smooth functionMathematicsAnalytic functionBulletin of the London Mathematical Society
researchProduct