Search results for "Pospiviroid"

showing 5 items of 5 documents

Symptom severity, infection progression and plant responses in solanum plants caused by three pospiviroids vary with the inoculation procedure

2021

This article belongs to the Section Molecular Plant Sciences.

0106 biological sciences0301 basic medicineViroidvirusesPospiviroidaeCEVd01 natural sciencesRibosome18S ribosomal RNAAgro-infiltrationSolanum lycopersicumBiology (General)Spectroscopyfood and beveragesGeneral MedicinePSTVdTranscriptRibosomeViroidsComputer Science Applications02.- Poner fin al hambre conseguir la seguridad alimentaria y una mejor nutrición y promover la agricultura sostenibleChemistryRNA ViralPlasmidsQH301-705.5PospiviroidaeBiologyEggplantStressArticleCatalysisTomatoMicrobiologyInorganic Chemistry03 medical and health sciencesBIOQUIMICA Y BIOLOGIA MOLECULARPhysical and Theoretical ChemistryQD1-999Molecular BiologyPotato spindle tuber viroidPlant DiseasesInoculationOrganic ChemistryfungiRibosomal RNAbiology.organism_classification030104 developmental biologyTCDVdSolanumRibosomes010606 plant biology & botany
researchProduct

Hop stunt viroid: A polyphagous pathogenic RNA that has shed light on viroid–host interactions

2021

[Taxonomy]: Hop stunt viroid (HSVd) is the type species of the genus Hostuviroid (family Pospiviroidae). The other species of this genus is Dahlia latent viroid, which presents an identical central conserved region (CCR) but lacks other structural hallmarks present in Hop stunt viroid. HSVd replication occurs in the nucleus through an asymmetric rolling-circle model as in the other members of the family Pospiviroidae, which also includes the genera Pospiviroid, Cocadviroid, Apscaviroid, and Coleoviroid.

0106 biological sciences0301 basic medicinereplicationViroidPospiviroidaeviroidsSoil ScienceGenome ViralPlant ScienceVirus Replication01 natural sciencesEpigenesis GeneticPlant Viruses03 medical and health sciencesCircular RNAGenusPathogen ProfileMolecular BiologyPlant DiseasesGeneticsepigeneticsbiologypathogenesisGenetic VariationRNAbiology.organism_classificationType species030104 developmental biologyPospiviroidHop stunt viroidHost-Pathogen InteractionsRNA ViralmovementAgronomy and Crop Science010606 plant biology & botanyMolecular Plant Pathology
researchProduct

Different rates of spontaneous mutation of chloroplastic and nuclear viroids as determined by high-fidelity ultra-deep sequencing

2017

[EN] Mutation rates vary by orders of magnitude across biological systems, being higher for simpler genomes. The simplest known genomes correspond to viroids, subviral plant replicons constituted by circular non-coding RNAs of few hundred bases. Previous work has revealed an extremely high mutation rate for chrysanthemum chlorotic mottle viroid, a chloroplastreplicating viroid. However, whether this is a general feature of viroids remains unclear. Here, we have used high-fidelity ultra-deep sequencing to determine the mutation rate in a common host (eggplant) of two viroids, each representative of one family: the chloroplastic eggplant latent viroid (ELVd, Avsunviroidae) and the nuclear pot…

0301 basic medicineMutation rateChloroplastsViroidvirusesPospiviroidaeArtificial Gene Amplification and ExtensionPlant ScienceSelf-CleavageVirus ReplicationBiochemistryPolymerase Chain ReactionGenomeDatabase and Informatics MethodsSequencing techniquesRibozymeNucleic AcidsRibozymesBiology (General)GeneticsHigh-Throughput Nucleotide Sequencingfood and beveragesRNA sequencingViroidsEnzymesAvsunviroidaeDeletion MutationVirusesPhysical SciencesRNA ViralIn-VivoSequence AnalysisResearch ArticleSubstitution MutationHammerhead RibozymesQH301-705.5Materials by StructureBioinformaticsEvolutionMaterials ScienceImmunologyPlant PathogensGenerationReplicationBiologyMicrobiology03 medical and health sciencesSequence Motif AnalysisVirologyGeneticsSolanum melongenaRNA-PolymeraseMolecular BiologyPotato spindle tuber viroidPlant DiseasesMatter030102 biochemistry & molecular biologyPoint mutationOrganismsBiology and Life SciencesProteinsRNAReverse Transcriptase-Polymerase Chain ReactionRC581-607Plant Pathologybiology.organism_classificationVirologyResearch and analysis methodsMolecular biology techniques030104 developmental biologyMutagenesisOligomersMutationEnzymologyRNAMotifParasitologyImmunologic diseases. AllergyPLOS Pathogens
researchProduct

Parsimonious Scenario for the Emergence of Viroid-Like Replicons De Novo

2019

This article belongs to the Special Issue Viroid-2018: International Conference on Viroids and Viroid-Like RNAs. Viroids are small, non-coding, circular RNA molecules that infect plants. Different hypotheses for their evolutionary origin have been put forward, such as an early emergence in a precellular RNA World or several de novo independent evolutionary origins in plants. Here, we discuss the plausibility of de novo emergence of viroid-like replicons by giving theoretical support to the likelihood of different steps along a parsimonious evolutionary pathway. While Avsunviroidae-like structures are relatively easy to obtain through evolution of a population of random RNA sequences of fixe…

0301 basic medicinePopulation dynamicsViroidMatemáticasvirusesPopulationPospiviroidaelcsh:QR1-502Computational biologycomputational simulationsVirus Replicationlcsh:MicrobiologyArticleNucleic acid secondary structureEvolution MolecularViral Proteins03 medical and health sciences0302 clinical medicineCircular RNAVirologypopulation dynamicsModular evolutionRepliconeducationPolymeraseBiología y BiomedicinaSimple replicatorsComputational simulationseducation.field_of_studyViroidstructure enumerationbiologysimple replicatorsviroidStructure enumerationRNARNA Circularbiology.organism_classificationRNA secondary structureViroids030104 developmental biologyInfectious Diseasesbiology.proteinNucleic Acid ConformationRNA ViralRepliconmodular evolution030217 neurology & neurosurgeryViruses
researchProduct

Parsimonious scenario for the emergence of viroid-like repliconsde novo

2019

AbstractViroids are small, non-coding, circular RNA molecules that infect plants. Different hypotheses for their evolutionary origin have been put forward, such as an early emergence in a precellular RNA World or severalde novoindependent evolutionary origins in plants. Here we discuss the plausibility ofde novoemergence of viroid-like replicons by giving theoretical support to the likelihood of different steps along a parsimonious evolutionary pathway. While Avsunviroidae-like structures are relatively easy to obtain through evolution of a population of random RNA sequences of fixed length, rod-like structures typical of Pospiviroidae are difficult to fix. Using different quantitative appr…

education.field_of_studybiologyViroidvirusesPospiviroidaePopulationRNAComputational biologybiology.organism_classificationCircular RNAbiology.proteinRepliconSequence motifeducationPolymerase
researchProduct