Search results for "Predatory"

showing 3 items of 143 documents

The impact of life stage and pigment source on the evolution of novel warning signal traits

2021

Our understanding of how novel warning color traits evolve in natural populations is largely based on studies of reproductive stages and organisms with endogenously produced pigmentation. In these systems, genetic drift is often required for novel alleles to overcome strong purifying selection stemming from frequency-dependent predation and positive assortative mating. Here, we integrate data from field surveys, predation experiments, population genomics, and phenotypic correlations to explain the origin and maintenance of geographic variation in a diet-based larval pigmentation trait in the redheaded pine sawfly (Neodiprion lecontei), a pine-feeding hymenopteran. Although our experiments c…

varoitusvärimäntypistiäisetecological geneticsPopulationFREQUENCY-DEPENDENT SELECTIONevoluutioAposematismPredationravintoNegative selectionchemical defenseGenetic driftAposematismpolytypic colorationGeneticsAnimalsaposematismCOLORPOPULATION-GENETICSmuuntelu (biologia)educationEcology Evolution Behavior and Systematicseducation.field_of_studybiologyPigmentationfungiAssortative matingcarotenoidsfood and beverageshost adaptationbiology.organism_classificationBiological EvolutionHymenopterakarotenoiditREAD ALIGNMENTNeodiprion leconteiSawflyCHEMICAL DEFENSEPhenotypeEvolutionary biologyTRADE-OFFLarvaPredatory Behavior1181 Ecology evolutionary biologySHIFTING BALANCEWOOD TIGER MOTHGeneral Agricultural and Biological SciencesGENETIC CORRELATIONSMULLERIAN MIMICRYEvolution
researchProduct

Diversity in warning coloration: selective paradox or the norm?

2019

Aposematic theory has historically predicted that predators should select for warning signals to converge on a single form, as a result of frequency-dependent learning. However, widespread variation in warning signals is observed across closely related species, populations and, most problematically for evolutionary biologists, among individuals in the same population. Recent research has yielded an increased awareness of this diversity, challenging the paradigm of signal monomorphy in aposematic animals. Here we provide a comprehensive synthesis of these disparate lines of investigation, identifying within them three broad classes of explanation for variation in aposematic warning signals: …

varoitusväripolytypismFREQUENCY-DEPENDENT SELECTIONModels BiologicalSEXUAL SELECTIONpolymorphismPOLYMORPHIC MULLERIAN MIMICRYSex FactorsmonimuotoisuusAnimalsaposematismEcosystemGRAPHOSOMA-LINEATUM HETEROPTERAPolymorphism GeneticINDO-WEST PACIFICEVOLUTIONARY SIGNIFICANCEBiological MimicryAge FactorsTemperaturePOISON FROGSOriginal ArticlesBiodiversityPigments BiologicalBiological EvolutionCORAL-SNAKE PATTERNcontinuous variationmuunteluBiological Variation PopulationPredatory Behavior1181 Ecology evolutionary biologyHISTORY TRADE-OFFSOriginal ArticleHELICONIUS BUTTERFLIES
researchProduct

Short-term responses of Rana arvalis tadpoles to pH and predator stress: adaptive divergence in behavioural and physiological plasticity?

2022

Environmental stress is a major driver of ecological and evolutionary processes in nature. To cope with stress, organisms can adjust through phenotypic plasticity and/or adapt through genetic change. Here, we compared short-term behavioural (activity) and physiological (corticosterone levels, CORT) responses of Rana arvalis tadpoles from two divergent populations (acid origin, AOP, versus neutral origin, NOP) to acid and predator stress. Tadpoles were initially reared in benign conditions at pH 7 and then exposed to a combination of two pH (acid versus neutral) and two predator cue (predator cue versus no predator cue) treatments. We assessed behavioural activity within the first 15 min, an…

viitasammakkoRanidaePhysiologyPhenotypic plasticityBiochemistryphenotypic plasticityeläinten käyttäytyminenkortikosteroniRana arvalisEndocrinologyAdaptive divergencehappamoituminenAnimalsBehaviourAdaptive divergence; Behaviour; Corticosterone; Phenotypic plasticity; Rana arvalisEcology Evolution Behavior and Systematicshormonaaliset vaikutuksetsopeutuminenadaptive divergencecorticosteronestressiHydrogen-Ion ConcentrationMiljövetenskapsaalistusbehaviourLarvaPredatory BehaviorAnimal Science and ZoologyCorticosteroneEnvironmental Sciencesympäristönmuutoksetfysiologiset vaikutukset
researchProduct