Search results for "Probabilistic"

showing 10 items of 380 documents

Context Trees, Variable Length Markov Chains and Dynamical Sources

2012

Infinite random sequences of letters can be viewed as stochastic chains or as strings produced by a source, in the sense of information theory. The relationship between Variable Length Markov Chains (VLMC) and probabilistic dynamical sources is studied. We establish a probabilistic frame for context trees and VLMC and we prove that any VLMC is a dynamical source for which we explicitly build the mapping. On two examples, the "comb" and the "bamboo blossom", we find a necessary and sufficient condition for the existence and the uniqueness of a stationary probability measure for the VLMC. These two examples are detailed in order to provide the associated Dirichlet series as well as the genera…

Discrete mathematicsPure mathematicsStationary distributionMarkov chain010102 general mathematicsProbabilistic dynamical sourcesProbabilistic logicContext (language use)Information theoryVariable length Markov chains01 natural sciencesMeasure (mathematics)Occurrences of words[MATH.MATH-PR]Mathematics [math]/Probability [math.PR]010104 statistics & probabilitysymbols.namesakesymbolsUniquenessDynamical systems of the intervalDirichlet series0101 mathematics[ MATH.MATH-PR ] Mathematics [math]/Probability [math.PR]Dirichlet seriesMathematics
researchProduct

Error-Free Affine, Unitary, and Probabilistic OBDDs

2018

We introduce the affine OBDD model and show that zero-error affine OBDDs can be exponentially narrower than bounded-error unitary and probabilistic OBDDs on certain problems. Moreover, we show that Las Vegas unitary and probabilistic OBDDs can be quadratically narrower than deterministic OBDDs. We also obtain the same results for the automata versions of these models.

Discrete mathematicsQuadratic growthLas vegas010102 general mathematicsProbabilistic logic02 engineering and technologyComputer Science::Computational ComplexityComputer Science::Artificial Intelligence01 natural sciencesUnitary stateAutomatonSuccinctnessComputer Science::Logic in Computer Science0202 electrical engineering electronic engineering information engineering020201 artificial intelligence & image processingAffine transformation0101 mathematicsComputer Science::DatabasesZero errorMathematics
researchProduct

A probabilistic meaning of certain quasinormal subgroups

2007

The role of the cyclic quasinormal subgroups has been recently described in groups both finite and infinite by S.Stonehewer and G.Zacher. This role can be better analyzed in the class of compact groups, obtaining restrictions for the probability that two randomly chosen elements commute. Mathematcs Subject Classification: 20D60, 20P05, 20D08

Discrete mathematicsSettore MAT/02 - AlgebraClass (set theory)Mutually commuting pairs commutativity degree compact groups quasinormal subgroupsProbabilistic logicSettore MAT/03 - GeometriaMeaning (existential)MathematicsInternational Journal of Algebra
researchProduct

Probability Propagation in Selected Aristotelian Syllogisms

2019

This paper continues our work on a coherence-based probability semantics for Aristotelian syllogisms (Gilio, Pfeifer, and Sanfilippo, 2016; Pfeifer and Sanfilippo, 2018) by studying Figure III under coherence. We interpret the syllogistic sentence types by suitable conditional probability assessments. Since the probabilistic inference of $P|S$ from the premise set ${P|M, S|M}$ is not informative, we add $p(M|(S ee M))>0$ as a probabilistic constraint (i.e., an ``existential import assumption'') to obtain probabilistic informativeness. We show how to propagate the assigned premise probabilities to the conclusion. Thereby, we give a probabilistic meaning to all syllogisms of Figure~III. We…

Discrete mathematicsSettore MAT/06 - Probabilita' E Statistica Matematica05 social sciencesProbabilistic logicSyllogismConditional probability02 engineering and technologyCoherence (statistics)Settore MAT/01 - Logica MatematicaImprecise probabilityAristotelian syllogismFigure III050105 experimental psychologyConstraint (information theory)Premise0202 electrical engineering electronic engineering information engineeringImprecise probability020201 artificial intelligence & image processing0501 psychology and cognitive sciencesConditional eventDefault reasoningCoherenceSentenceMathematics
researchProduct

Conditional Random Quantities and Compounds of Conditionals

2013

In this paper we consider finite conditional random quantities and conditional previsions assessments in the setting of coherence. We use a suitable representation for conditional random quantities; in particular the indicator of a conditional event $E|H$ is looked at as a three-valued quantity with values 1, or 0, or $p$, where $p$ is the probability of $E|H$. We introduce a notion of iterated conditional random quantity of the form $(X|H)|K$ defined as a suitable conditional random quantity, which coincides with $X|HK$ when $H \subseteq K$. Based on a recent paper by S. Kaufmann, we introduce a notion of conjunction of two conditional events and then we analyze it in the setting of cohere…

Discrete mathematicsSettore MAT/06 - Probabilita' E Statistica MatematicaLogicImport–Export principleProbability (math.PR)Probabilistic logicConjunctionOf the formSettore M-FIL/02 - Logica E Filosofia Della ScienzaCoherence (philosophical gambling strategy)Conditional random quantitieConjunction (grammar)Lower/upper prevision boundsHistory and Philosophy of ScienceNegationIterated functionIterated conditioningFOS: MathematicsConditional eventRepresentation (mathematics)CoherenceDisjunctionMathematics - ProbabilityMathematicsEvent (probability theory)
researchProduct

Compound conditionals, Fr\'echet-Hoeffding bounds, and Frank t-norms

2021

Abstract In this paper we consider compound conditionals, Frechet-Hoeffding bounds and the probabilistic interpretation of Frank t-norms. By studying the solvability of suitable linear systems, we show under logical independence the sharpness of the Frechet-Hoeffding bounds for the prevision of conjunctions and disjunctions of n conditional events. In addition, we illustrate some details in the case of three conditional events. We study the set of all coherent prevision assessments on a family containing n conditional events and their conjunction, by verifying that it is convex. We discuss the case where the prevision of conjunctions is assessed by Lukasiewicz t-norms and we give explicit s…

Discrete mathematicsSettore MAT/06 - Probabilita' E Statistica MatematicaLogical independenceFrank t-normsApplied MathematicsLinear systemProbabilistic logicRegular polygon02 engineering and technologyConjunction and disjunctionConditional previsionTheoretical Computer ScienceConvexityFréchet-Hoeffding boundArtificial Intelligence020204 information systems0202 electrical engineering electronic engineering information engineering020201 artificial intelligence & image processingPairwise comparisonCoherenceSoftwareMathematics - ProbabilityCounterexampleMathematicsCorresponding conditional
researchProduct

Generalized probabilistic modus ponens

2017

Modus ponens (from A and “if A then C” infer C) is one of the most basic inference rules. The probabilistic modus ponens allows for managing uncertainty by transmitting assigned uncertainties from the premises to the conclusion (i.e., from P(A) and P(C|A) infer P(C)). In this paper, we generalize the probabilistic modus ponens by replacing A by the conditional event A|H. The resulting inference rule involves iterated conditionals (formalized by conditional random quantities) and propagates previsions from the premises to the conclusion. Interestingly, the propagation rules for the lower and the upper bounds on the conclusion of the generalized probabilistic modus ponens coincide with the re…

Discrete mathematicsSettore MAT/06 - Probabilita' E Statistica MatematicaProbabilistic logicConjoined conditionalPrevision0102 computer and information sciences02 engineering and technologyCoherence (philosophical gambling strategy)Settore MAT/01 - Logica MatematicaModus ponen01 natural sciencesConditional random quantitieTheoretical Computer ScienceModus ponendo tollens010201 computation theory & mathematicsIterated functionComputer Science0202 electrical engineering electronic engineering information engineeringIterated conditional020201 artificial intelligence & image processingRule of inferenceModus ponensCoherenceEvent (probability theory)Mathematics
researchProduct

Error-Free Affine, Unitary, and Probabilistic OBDDs

2021

We introduce the affine OBDD model and show that zero-error affine OBDDs can be exponentially narrower than bounded-error unitary and probabilistic OBDDs on certain problems. Moreover, we show that Las-Vegas unitary and probabilistic OBDDs can be quadratically narrower than deterministic OBDDs. We also obtain the same results for the automata counterparts of these models.

Discrete mathematicsState complexityComputer Science::Logic in Computer ScienceComputer Science (miscellaneous)Probabilistic logicAffine transformationComputer Science::Computational ComplexityComputer Science::Artificial IntelligenceUnitary stateComputer Science::DatabasesMathematicsZero errorInternational Journal of Foundations of Computer Science
researchProduct

Probabilities to Accept Languages by Quantum Finite Automata

1999

We construct a hierarchy of regular languages such that the current language in the hierarchy can be accepted by 1-way quantum finite automata with a probability smaller than the corresponding probability for the preceding language in the hierarchy. These probabilities converge to 1/2.

Discrete mathematicsTheoretical computer scienceNested wordFinite-state machineHierarchy (mathematics)Computer scienceComputer Science::Computation and Language (Computational Linguistics and Natural Language and Speech Processing)Turing machinesymbols.namesakeNonlinear Sciences::Exactly Solvable and Integrable SystemsRegular languageProbabilistic automatonAnalytical hierarchysymbolsComputer Science::Programming LanguagesQuantum finite automataQuantum algorithmNondeterministic finite automaton
researchProduct

Finite State Transducers with Intuition

2010

Finite automata that take advice have been studied from the point of view of what is the amount of advice needed to recognize nonregular languages. It turns out that there can be at least two different types of advice. In this paper we concentrate on cases when the given advice contains zero information about the input word and the language to be recognized. Nonetheless some nonregular languages can be recognized in this way. The help-word is merely a sufficiently long word with nearly maximum Kolmogorov complexity. Moreover, any sufficiently long word with nearly maximum Kolmogorov complexity can serve as a help-word. Finite automata with such help can recognize languages not recognizable …

Discrete mathematicsTheoretical computer scienceNested wordKolmogorov complexityComputer scienceComputer Science::Computation and Language (Computational Linguistics and Natural Language and Speech Processing)Nondeterministic algorithmTheoryofComputation_MATHEMATICALLOGICANDFORMALLANGUAGESDeterministic finite automatonKolmogorov structure functionProbabilistic automatonQuantum finite automataNondeterministic finite automatonComputer Science::Formal Languages and Automata Theory
researchProduct