Search results for "Probabilistic"

showing 10 items of 380 documents

Weak and strong recognition by 2-way randomized automata

1997

Languages weakly recognized by a Monte Carlo 2-way finite automaton with n states are proved to be strongly recognized by a Monte Carlo 2-way finite automaton with no(n) states. This improves dramatically over the previously known result by M.Karpinski and R.Verbeek [10] which is also nontrivial since these languages can be nonregular [5]. For tally languages the increase in the number of states is proved to be only polynomial, and these languages are regular.

Deterministic pushdown automatonCombinatoricsDeterministic automatonProbabilistic automatonPushdown automatonQuantum finite automataBüchi automatonTwo-way deterministic finite automatonNondeterministic finite automatonComputer Science::Computational ComplexityComputer Science::Formal Languages and Automata TheoryMathematics
researchProduct

Managing conversation uncertainty in TutorJ

2009

Uncertainty in natural language dialogue is often treated through stochastic models. Some of the authors already presented TutorJ mat is an Intelligent Tutoring System, whose interaction with the user is very intensive, and makes use of both dialogic and graphical modality. When managing the interaction, the system needs to cope with uncertainty due to the understanding of the user's needs and wishes. In this paper we present the extended version of TutorJ, focusing on the new features added to its chatbot module. These features allow to merge deterministic and probabilistic reasoning in dialogue management, and in writing the rules of the system's procedural memory.

Dialogue managementNatural language dialogueExtended versionIntelligent tutoring systemProbabilistic reasoning
researchProduct

Hierarchies of probabilistic and team FIN-learning

2001

AbstractA FIN-learning machine M receives successive values of the function f it is learning and at some moment outputs a conjecture which should be a correct index of f. FIN learning has two extensions: (1) If M flips fair coins and learns a function with certain probability p, we have FIN〈p〉-learning. (2) When n machines simultaneously try to learn the same function f and at least k of these machines output correct indices of f, we have learning by a [k,n]FIN team. Sometimes a team or a probabilistic learner can simulate another one, if their probabilities p1,p2 (or team success ratios k1/n1,k2/n2) are close enough (Daley et al., in: Valiant, Waranth (Eds.), Proc. 5th Annual Workshop on C…

Discrete mathematics020203 distributed computingProbabilistic learningConjectureFinGeneral Computer ScienceIndex (typography)Probabilistic logicInductive inference0102 computer and information sciences02 engineering and technologyFunction (mathematics)01 natural sciencesTheoretical Computer ScienceMoment (mathematics)Computational learning theory010201 computation theory & mathematics0202 electrical engineering electronic engineering information engineeringTeam learningAlgorithmComputer Science(all)MathematicsTheoretical Computer Science
researchProduct

On the determinization of weighted finite automata

1998

We study determinization of weighted finite-state automata (WFAs), which has important applications in automatic speech recognition (ASR). We provide the first polynomial-time algorithm to test for the twins property, which determines if a WFA admits a deterministic equivalent. We also provide a rigorous analysis of a determinization algorithm of Mohri, with tight bounds for acyclic WFAs. Given that WFAs can expand exponentially when determinized, we explore why those used in ASR tend to shrink. The folklore explanation is that ASR WFAs have an acyclic, multi-partite structure. We show, however, that there exist such WFAs that always incur exponential expansion when determinized. We then in…

Discrete mathematicsClass (set theory)Finite-state machineBinary treeComputer Science::SoundComputer scienceDeterministic automatonProbabilistic automatonStructure (category theory)AlgorithmAutomaton
researchProduct

On a class of languages recognizable by probabilistic reversible decide-and-halt automata

2009

AbstractWe analyze the properties of probabilistic reversible decide-and-halt automata (DH-PRA) and show that there is a strong relationship between DH-PRA and 1-way quantum automata. We show that a general class of regular languages is not recognizable by DH-PRA by proving that two “forbidden” constructions in minimal deterministic automata correspond to languages not recognizable by DH-PRA. The shown class is identical to a class known to be not recognizable by 1-way quantum automata. We also prove that the class of languages recognizable by DH-PRA is not closed under union and other non-trivial Boolean operations.

Discrete mathematicsClass (set theory)Quantum automataNested wordGeneral Computer ScienceProbabilistic logicAutomatonTheoretical Computer ScienceRegular languageDeterministic automatonProbabilistic automatonQuantum finite automataProbabilistic automataComputer Science::Formal Languages and Automata TheoryMathematicsComputer Science(all)Theoretical Computer Science
researchProduct

Quasi Conjunction and Inclusion Relation in Probabilistic Default Reasoning

2011

We study the quasi conjunction and the Goodman & Nguyen inclusion relation for conditional events, in the setting of probabilistic default reasoning under coherence. We deepen two recent results given in (Gilio and Sanfilippo, 2010): the first result concerns p-entailment from a family F of conditional events to the quasi conjunction C(S) associated with each nonempty subset S of F; the second result, among other aspects, analyzes the equivalence between p-entailment from F and p-entailment from C(S), where S is some nonempty subset of F. We also characterize p-entailment by some alternative theorems. Finally, we deepen the connections between p-entailment and the Goodman & Nguyen inclusion…

Discrete mathematicsClass (set theory)goodman & nguyen inclusion relationSettore MAT/06 - Probabilita' E Statistica MatematicaSettore INF/01 - Informaticap-entailment.; quasi conjunction; goodman & nguyen inclusion relation; qand rule; coherence; probabilistic default reasoning; p-entailmentProbabilistic logicqand ruleprobabilistic default reasoningConsistency (knowledge bases)Coherence (philosophical gambling strategy)p-entailmentCoherence probabilistic default reasoning quasi conjunction Goodman & Nguyen inclusion relation QAND rule p-entailment.coherenceConjunction (grammar)Default reasoningquasi conjunctionGreatest elementAlgorithmEquivalence (measure theory)Mathematics
researchProduct

The Complexity of Probabilistic versus Quantum Finite Automata

2002

We present a language Ln which is recognizable by a probabilistic finite automaton (PFA) with probability 1 - ? for all ? > 0 with O(log2 n) states, with a deterministic finite automaton (DFA) with O(n) states, but a quantum finite automaton (QFA) needs at least 2?(n/log n) states.

Discrete mathematicsDeterministic finite automatonDFA minimizationDeterministic automatonProbabilistic automatonBüchi automatonQuantum finite automataTwo-way deterministic finite automatonNondeterministic finite automatonNonlinear Sciences::Cellular Automata and Lattice GasesComputer Science::Formal Languages and Automata TheoryMathematics
researchProduct

Finite State Verifiers with Constant Randomness

2012

We give a new characterization of NL as the class of languages whose members have certificates that can be verified with small error in polynomial time by finite state machines that use a constant number of random bits, as opposed to its conventional description in terms of deterministic logarithmic-space verifiers. It turns out that allowing two-way interaction with the prover does not change the class of verifiable languages, and that no polynomially bounded amount of randomness is useful for constant-memory computers when used as language recognizers, or public-coin verifiers.

Discrete mathematicsFinite-state machine010102 general mathematics0102 computer and information sciencesGas meter prover01 natural sciencesRegular language010201 computation theory & mathematicsBounded functionProbabilistic automaton0101 mathematicsConstant (mathematics)Time complexityRandomnessMathematics
researchProduct

Counting with Probabilistic and Ultrametric Finite Automata

2014

We investigate the state complexity of probabilistic and ultrametric finite automata for the problem of counting, i.e. recognizing the one-word unary language \(C_n=\left\{ 1^n \right\} \). We also review the known results for other types of automata.

Discrete mathematicsFinite-state machineState complexityUnary languageProbabilistic logicQuantum finite automataNonlinear Sciences::Cellular Automata and Lattice GasesUltrametric spaceComputer Science::Formal Languages and Automata TheoryMathematicsAutomaton
researchProduct

Regularity of one-letter languages acceptable by 2-way finite probabilistic automata

1991

R. Freivalds proved that the nonregular language {0m1m} can be recognized by 2-way probabilistic finite automata (2pfa) with arbitrarily high probability 1-e (e>0). We prove that such an effect is impossible for one-letter languages: every one-letter language acceptable by 2pfa with an isolated cutpoint is regular.

Discrete mathematicsHigh probabilityProbabilistic finite automataComputer scienceProbabilistic automaton
researchProduct