Search results for "Protein Conformation"
showing 10 items of 515 documents
De novo design of protein kinase inhibitors by in silico identification of hinge region-binding fragments.
2013
Protein kinases constitute an attractive family of enzyme targets with high relevance to cell and disease biology. Small molecule inhibitors are powerful tools to dissect and elucidate the function of kinases in chemical biology research and to serve as potential starting points for drug discovery. However, the discovery and development of novel inhibitors remains challenging. Here, we describe a structure-based de novo design approach that generates novel, hinge-binding fragments that are synthetically feasible and can be elaborated to small molecule libraries. Starting from commercially available compounds, core fragments were extracted, filtered for pharmacophoric properties compatible w…
Full and Partial Agonism of Ionotropic Glutamate Receptors Indicated by Molecular Dynamics Simulations
2011
Ionotropic glutamate receptors (iGluRs) are synaptic proteins that facilitate signal transmission in the central nervous system. Extracellular iGluR cleft closure is linked to receptor activation; however, the mechanism underlying partial agonism is not entirely understood. Full agonists close the bilobed ligand-binding domain (LBD), while antagonists prevent closure; the transmembrane ion channel either opens or stays closed, respectively. Although some bulky partial agonists produce intermediate iGluR-LBD closure, the available crystal structures also imply that the cleft can be shut with certain partial agonists. Recently, we have shown that the iGluR-LBD closure stage can be recreated b…
The structural effect between the output module and chromophore-binding domain is a two-way street via the hairpin extension.
2022
AbstractSignal transduction typically starts with either ligand binding or cofactor activation, eventually affecting biological activities in the cell. In red light-sensing phytochromes, isomerization of the bilin chromophore results in regulation of the activity of diverse output modules. During this process, several structural elements and chemical events influence signal propagation. In our study, we have studied the full-length bacteriophytochrome from Deinococcus radiodurans as well as a previously generated optogenetic tool where the native histidine kinase output module has been replaced with an adenylate cyclase. We show that the composition of the output module influences the stabi…
Nested allosteric interactions in extracellular hemoglobin of the leech Macrobdella decora
2003
Hemoglobin from the leech Macrobdella decora belongs to the class of giant extracellular hexagonal bilayer globin structures found in annelid and vestimentiferan worms. These complexes consist of 144 heme-bearing subunits, exhibit a characteristic quaternary structure (2 × (6 × (3 × 4))), and contain tetramers as basic substructures that express cooperative oxygen binding and thus provide a structural basis for a hierarchy in allosteric interactions. A thorough analysis of the isolated tetramer indicates that it functions as a trimer of cooperatively interacting subunits and a non-cooperative monomer rather than as four interacting subunits. A thermodynamic analysis of the whole molecule fa…
Self-assembly of bioelastomeric structures from solutions: Mean-field critical behavior and Flory-Huggins free energy of interactions
1993
Elastic and quasi-elastic light scattering studies were performed on aqueous solutions of poly (Val-Pro-Gly-Gly), a representative synthetic bioelastomer that differs from the previously studied poly (Val-Pro-Gly-Val-Gly) by the deletion of the hydrophobic Val in position four. When the spinodal line was approached from the region of thermodynamic stability, the intensity of light scattered by fluctuations, and the related lifetime and correlation length, were observed to diverge with mean-field critical exponents for both systems. Fitting of the experimental data allowed determining the spinodal and binodal (coexistence) lines that characterize the phase diagrams of the two systems, and it…
Molecular Dynamics Simulations of the Initial Adsorption Stages of Fibrinogen on Mica and Graphite Surfaces.
2015
Fibrinogen, a blood glycoprotein of vertebrates, plays an essential role in blood clotting by polymerizing into fibrin when activated. Upon adsorption on material surfaces, it also contributes to determine their biocompatibility and has been implicated in the onset of thrombosis and inflammation at medical implants. Here we present the first fully atomistic simulations of the initial stages of the adsorption process of fibrinogen on mica and graphite surfaces. The simulations reveal a weak adsorption on mica that allows frequent desorption and reorientation events. This adsorption is driven by electrostatic interactions between the protein and the silicate surface as well as the counterion …
Ultrafast myoglobin structural dynamics observed with an X-ray free-electron laser.
2014
Light absorption can trigger biologically relevant protein conformational changes. The light-induced structural rearrangement at the level of a photoexcited chromophore is known to occur in the femtosecond timescale and is expected to propagate through the protein as a quake-like intramolecular motion. Here we report direct experimental evidence of such ‘proteinquake’ observed in myoglobin through femtosecond X-ray solution scattering measurements performed at the Linac Coherent Light Source X-ray free-electron laser. An ultrafast increase of myoglobin radius of gyration occurs within 1 picosecond and is followed by a delayed protein expansion. As the system approaches equilibrium it underg…
Ionic self-complementarity induces amyloid-like fibril formation in an isolated domain of a plant copper metallochaperone protein
2004
This article is available from: http://www.biomedcentral.com/1472-6807/4/7
7C: Computational Chromosome Conformation Capture by Correlation of ChIP-seq at CTCF motifs.
2019
Abstract Background Knowledge of the three-dimensional structure of the genome is necessary to understand how gene expression is regulated. Recent experimental techniques such as Hi-C or ChIA-PET measure long-range chromatin interactions genome-wide but are experimentally elaborate, have limited resolution and such data is only available for a limited number of cell types and tissues. Results While ChIP-seq was not designed to detect chromatin interactions, the formaldehyde treatment in the ChIP-seq protocol cross-links proteins with each other and with DNA. Consequently, also regions that are not directly bound by the targeted TF but interact with the binding site via chromatin looping are…
Influence of metal ions on thermal aggregation of bovine serum albumin: aggregation kinetics and structural changes
2009
Metal ions are implicated in protein aggregation processes of several neurodegenerative pathologies. In this work the effects of Cu(II) and Zn(II) ions on heat-induced structural modifications of bovine serum albumin (BSA) were studied, with the aim of delineating the role of these ions in the early stages of proteins aggregation kinetics. A joint application of different techniques was used. The aggregate growth was followed by dynamic light scattering measurements, whereas the conformational changes occurring in the protein structure were monitored by Raman and IR spectroscopy. Both in absence and in presence of metal ions, heating treatment gave rise to b-structures to the detriment of a…