Search results for "Protein Domain"

showing 10 items of 132 documents

Raman and Infrared Spectra of Acoustical, Functional Modes of Proteins from All-Atom and Coarse-Grained Normal Mode Analysis

2018

The directions of the largest thermal fluctuations of the structure of a protein in its native state are the directions of its low-frequency modes (below 1 THz), named acoustical modes by analogy with the acoustical phonons of a material. The acoustical modes of a protein assist its conformational changes and are related to its biological functions. Low-frequency modes are difficult to detect experimentally. A survey of experimental data of low-frequency modes of proteins is presented. Theoretical approaches, based on normal mode analysis, are of first interest to understand the role of the acoustical modes in proteins. In this chapter, the fundamentals of normal mode analysis using all-ato…

PhysicsQuantitative Biology::Biomoleculessymbols.namesakeNormal modePhononProtein domainsymbolsThermal fluctuationsInfrared spectroscopyRaman spectroscopySpectroscopyMolecular physicsConalbumin
researchProduct

Thermostability of Two Cyanobacterial GrpE Thermosensors

2011

GrpE proteins act as co-chaperones for DnaK heat-shock proteins. The dimeric protein unfolds under heat stress conditions, which results in impaired interaction with a DnaK protein. Since interaction of GrpE with DnaK is crucial for the DnaK chaperone activity, GrpE proteins act as a thermosensor in bacteria. Here we have analyzed the thermostability and function of two GrpE homologs of the mesophilic cyanobacterium Synechocystis sp. PCC 6803 and of the thermophilic cyanobacterium Thermosynechococcus elongatus BP1. While in Synechocystis an N-terminal helix pair of the GrpE dimer appears to be the thermosensing domain and mainly mediates GrpE dimerization, the C-terminal four-helix bundle i…

PhysiologyMolecular Sequence DataProtein domainPlant SciencePlasma protein bindingCyanobacteriaProtein structureBacterial ProteinsHeat shock proteinEscherichia coliAmino Acid SequencePeptide sequenceHeat-Shock ProteinsThermostabilitySequence Homology Amino AcidbiologyProtein StabilityChemistryCircular DichroismGenetic Complementation TestSynechocystisSynechocystisTemperatureCell BiologyGeneral Medicinebiology.organism_classificationProtein Structure TertiaryCross-Linking ReagentsChaperone (protein)Biophysicsbiology.proteinbacteriaProtein MultimerizationProtein BindingPlant and Cell Physiology
researchProduct

The Role of Low Complexity Regions in Protein Interaction Modes: An Illustration in Huntingtin

2021

Low complexity regions (LCRs) are very frequent in protein sequences, generally having a lower propensity to form structured domains and tending to be much less evolutionarily conserved than globular domains. Their higher abundance in eukaryotes and in species with more cellular types agrees with a growing number of reports on their function in protein interactions regulated by post-translational modifications. LCRs facilitate the increase of regulatory and network complexity required with the emergence of organisms with more complex tissue distribution and development. Although the low conservation and structural flexibility of LCRs complicate their study, evolutionary studies of proteins …

Protein Conformation alpha-Helical0301 basic medicineNetwork complexityHuntingtinintrinsically disordered regionsAmino Acid MotifsComputational biologyBiologyprotein interactionsArticlecompositionally biased regionsCatalysisProtein–protein interactionlcsh:ChemistryEvolution MolecularInorganic ChemistryLow complexity03 medical and health sciencesProtein DomainsProtein Interaction MappingAnimalsHumansp300-CBP Transcription FactorsAmino Acid SequenceProtein Interaction MapsHuntingtinTissue distributionPhysical and Theoretical Chemistrylcsh:QH301-705.5Molecular BiologySpectroscopyHuntingtin Protein030102 biochemistry & molecular biologyOrganic ChemistryNuclear Proteinsp120 GTPase Activating ProteinGeneral MedicineMultiple modesSynapsinslow complexity regionsComputer Science ApplicationshomorepeatsMicroscopy Electron030104 developmental biologylcsh:Biology (General)lcsh:QD1-999Sequence AlignmentFunction (biology)Protein BindingInternational Journal of Molecular Sciences
researchProduct

Disentangling the complexity of low complexity proteins

2020

Abstract There are multiple definitions for low complexity regions (LCRs) in protein sequences, with all of them broadly considering LCRs as regions with fewer amino acid types compared to an average composition. Following this view, LCRs can also be defined as regions showing composition bias. In this critical review, we focus on the definition of sequence complexity of LCRs and their connection with structure. We present statistics and methodological approaches that measure low complexity (LC) and related sequence properties. Composition bias is often associated with LC and disorder, but repeats, while compositionally biased, might also induce ordered structures. We illustrate this dichot…

Protein ConformationComputer scienceReview ArticleComputational biologyMeasure (mathematics)Evolution MolecularLow complexity03 medical and health sciencesProtein DomainsAmino Acid Sequencestructure[SDV.BBM.BC]Life Sciences [q-bio]/Biochemistry Molecular Biology/Biochemistry [q-bio.BM]Databases ProteinMolecular Biology030304 developmental biologyStructure (mathematical logic)0303 health sciencesSequence[SCCO.NEUR]Cognitive science/Neurosciencecomposition bias030302 biochemistry & molecular biologyProteinsdisorderlow complexity regionsStructure and function[INFO.INFO-BI]Computer Science [cs]/Bioinformatics [q-bio.QM]AlgorithmsInformation SystemsBriefings in Bioinformatics
researchProduct

Conformational clamping by a membrane ligand activates the EphA2 receptor

2021

AbstractThe EphA2 receptor is a promising drug target for cancer treatment, since EphA2 activation can inhibit metastasis and tumor progression. It has been recently described that the TYPE7 peptide activates EphA2 using a novel mechanism that involves binding to the single transmembrane domain of the receptor. TYPE7 is a conditional transmembrane (TM) ligand, which only inserts into membranes at neutral pH in the presence of the TM region of EphA2. However, how membrane interactions can activate EphA2 is not known. We systematically altered the sequence of TYPE7 to identify the binding motif used to activate EphA2. With the resulting six peptides, we performed biophysical and cell migratio…

Protein ConformationSequence HomologyTm ligandsPeptideMolecular Dynamics SimulationLigandsReceptor tyrosine kinaseArticleBimolecular fluorescence complementationProtein DomainsStructural BiologyCell MovementCell surface receptorTumor Cells CulturedHumansAmino Acid SequenceReceptorMolecular BiologyMelanomachemistry.chemical_classificationBinding SitesMembranesbiologyChemistryReceptor EphA2Membrane ProteinsLigand (biochemistry)Peptide FragmentsTransmembrane proteinTransmembrane domainMembranebiology.proteinBiophysicsProtein MultimerizationProtein Binding
researchProduct

Methodological approaches for the analysis of transmembrane domain interactions: A systematic review

2021

The study of protein-protein interactions (PPI) has proven fundamental for the understanding of the most relevant cell processes. Any protein domain can participate in PPI, including transmembrane (TM) segments that can establish interactions with other TM domains (TMDs). However, the hydrophobic nature of TMDs and the environment they occupy complicates the study of intramembrane PPI, which demands the use of specific approaches and techniques. In this review, we will explore some of the strategies available to study intramembrane PPI in vitro, in vivo, and, in silico, focusing on those techniques that could be carried out in a standard molecular biology laboratory regarding its previous e…

Protein FoldingBacteriaChemistryIn silicoProtein domainBiophysicsMembrane ProteinsCell CommunicationCell BiologyComputational biologyBiochemistryTransmembrane proteinIn vitroProtein–protein interactionTransmembrane domainProtein DomainsMembrane proteinProtein foldingProtein Interaction MapsHydrophobic and Hydrophilic InteractionsBiochimica et Biophysica Acta (BBA) - Biomembranes
researchProduct

Targeting SARS-CoV-2 RBD Interface: a Supervised Computational Data-Driven Approach to Identify Potential Modulators

2020

Coronavirus disease 2019 (COVID-19) has spread out as a pandemic threat affecting over 2 million people. The infectious process initiates via binding of SARS-CoV-2 Spike (S) glycoprotein to host angiotensin-converting enzyme 2 (ACE2). The interaction is mediated by the receptor-binding domain (RBD) of S glycoprotein, promoting host receptor recognition and binding to ACE2 peptidase domain (PD), thus representing a promising target for therapeutic intervention. Herein, we present a computational study aimed at identifying small molecules potentially able to target RBD. Although targeting PPI remains a challenge in drug discovery, our investigation highlights that interaction between SARS-CoV…

Protein domainPneumonia ViralDruggabilityDrug Evaluation Preclinicalprotein-protein interactionsComputational biologyBiologyMolecular Dynamics SimulationPeptidyl-Dipeptidase AMolecular dynamics01 natural sciencesBiochemistryMolecular Docking SimulationAntiviral Agentsdockingmolecular dynamicProtein–protein interactionSmall Molecule LibrariesBetacoronavirusProtein DomainsDrug DiscoveryHumansGeneral Pharmacology Toxicology and PharmaceuticsPandemicsPharmacologyFull Paperpharmacophore010405 organic chemistryDrug discoverySARS-CoV-2Organic ChemistryCOVID-19Small molecule0104 chemical sciencesProtein-Protein InteractionMolecular Docking Simulation010404 medicinal & biomolecular chemistryDocking (molecular)Spike Glycoprotein CoronavirusdockingMolecular MedicineAngiotensin-Converting Enzyme 2PharmacophoreCoronavirus InfectionsProtein Binding
researchProduct

The cytosolic Arabidopsis thaliana cysteine desulfurase ABA3 delivers sulfur to the sulfurtransferase STR18

2020

ABSTRACTThe biosynthesis of many sulfur-containing molecules depends on cysteine as a sulfur source. Cysteine desulfurase (CD) and rhodanese (Rhd) domain-containing protein families participate in the trafficking of sulfur for various metabolic pathways in bacteria and human, but their connection is not yet described in plants. The existence of natural chimeric proteins, however, containing both CD and Rhd domains in specific bacterial genera suggests a general interaction between both proteins. We report here the biochemical relationships between two cytosolic proteins from Arabidopsis thaliana, a Rhd domain containing protein, the sulfurtransferase 18 (STR18), and a CD isoform referred to…

Protein familyArabidopsisSulfurtransferaseRhodaneseBiochemistry03 medical and health scienceschemistry.chemical_compoundCytosolProtein DomainsArabidopsis thalianaCysteineMolecular Biology030304 developmental biology0303 health sciencesbiologyArabidopsis ProteinsCysteine desulfurase030302 biochemistry & molecular biologyCell Biologybiology.organism_classificationFusion proteinThiosulfate SulfurtransferaseCarbon-Sulfur LyasesBiochemistrychemistrySulfurtransferasesMolybdenum cofactorSulfurCysteine
researchProduct

Bioinformatic flowchart and database to investigate the origins and diversity of Clan AA peptidases

2009

Abstract Background Clan AA of aspartic peptidases relates the family of pepsin monomers evolutionarily with all dimeric peptidases encoded by eukaryotic LTR retroelements. Recent findings describing various pools of single-domain nonviral host peptidases, in prokaryotes and eukaryotes, indicate that the diversity of clan AA is larger than previously thought. The ensuing approach to investigate this enzyme group is by studying its phylogeny. However, clan AA is a difficult case to study due to the low similarity and different rates of evolution. This work is an ongoing attempt to investigate the different clan AA families to understand the cause of their diversity. Results In this paper, we…

Protein familySequence analysisImmunologyProtein domainMolecular Sequence DataBiologycomputer.software_genreGeneral Biochemistry Genetics and Molecular BiologyProtein Structure SecondaryPhylogeneticsSequence Analysis ProteinSoftware DesignConsensus SequenceConsensus sequenceAspartic Acid EndopeptidasesClanAmino Acid SequenceDatabases ProteinPeptide sequencelcsh:QH301-705.5Ecology Evolution Behavior and SystematicsPhylogenyDatabaseAgricultural and Biological Sciences(all)Biochemistry Genetics and Molecular Biology(all)Applied MathematicsResearchComputational BiologyGenetic VariationGene AnnotationTemplates GeneticMarkov ChainsProtein Structure Tertiarylcsh:Biology (General)Modeling and SimulationGeneral Agricultural and Biological SciencescomputerBiology Direct
researchProduct

Assessing the low complexity of protein sequences via the low complexity triangle.

2020

Background Proteins with low complexity regions (LCRs) have atypical sequence and structural features. Their amino acid composition varies from the expected, determined proteome-wise, and they do not follow the rules of structural folding that prevail in globular regions. One way to characterize these regions is by assessing the repeatability of a sequence, that is, calculating the local propensity of a region to be part of a repeat. Results We combine two local measures of low complexity, repeatability (using the RES algorithm) and fraction of the most frequent amino acid, to evaluate different proteomes, datasets of protein regions with specific features, and individual cases of proteins…

ProteomeProteomesComputer scienceProtein SequencingBiochemistryDatabase and Informatics MethodsSequence Analysis ProteinProtein methodsPeptide sequencechemistry.chemical_classification0303 health sciencesSequenceMultidisciplinary030302 biochemistry & molecular biologyQRGenomicsAmino acidTandem RepeatsProteomeAmino Acid AnalysisMedicineSequence AnalysisResearch ArticleRepetitive Sequences Amino AcidBioinformaticsSequence analysisScienceResearch and Analysis MethodsGenome Complexity03 medical and health sciencesProtein DomainsAmino Acid Sequence AnalysisTandem repeatGeneticsHumansFraction (mathematics)Repeated SequencesAmino Acid SequenceMolecular Biology TechniquesSequencing TechniquesRepresentation (mathematics)Molecular Biology030304 developmental biologyMolecular Biology Assays and Analysis Techniquesbusiness.industryBiology and Life SciencesProteinsComputational BiologyPattern recognitionchemistryGlobular ProteinsArtificial intelligencebusinessPLoS ONE
researchProduct