Search results for "Protein Structure"

showing 10 items of 757 documents

Structural Mechanism of N-Methyl-D-Aspartate Receptor Type 1 Partial Agonism

2012

N-methyl-D-aspartate (NMDA) receptors belong to a family of ionotropic glutamate receptors that contribute to the signal transmission in the central nervous system. NMDA receptors are heterotetramers that usually consist of two GluN1 and GluN2 monomers. The extracellular ligand-binding domain (LBD) of a monomer is comprised of discontinuous segments that form the functional domains D1 and D2. While the binding of a full agonist glycine to LBD of GluN1 is linked to cleft closure and subsequent ion-channel opening, partial agonists are known to activate the receptor only sub-maximally. Although the crystal structures of the LBD of related GluA2 receptor explain the mechanism for the partial a…

AgonistProtein Structuremedicine.drug_classGlycineMolecular ConformationBiophysicslcsh:MedicineMolecular Dynamics SimulationLigandsta3111Receptors N-Methyl-D-AspartateBiochemistryBiophysics Simulationsta3112Partial agonistIon ChannelsChemical BiologyMacromolecular Structure AnalysismedicineBiomacromolecule-Ligand Interactionslcsh:ScienceReceptorBiologyta116Ion channelCrystallographyMultidisciplinaryChemistrylcsh:Rta1182Glutamate receptorProteinsComputational BiologyNeurotransmittersProtein Structure TertiaryTransmembrane ProteinsBiochemistryCycloserineBiophysicsNMDA receptorLigand-gated ion channellcsh:Qhormones hormone substitutes and hormone antagonistsProtein BindingResearch ArticleNeuroscienceIonotropic effectPLoS ONE
researchProduct

Homodimeric murine interleukin-3 agonists indicate that ligand dimerization is important for high-affinity receptor complex formation.

1994

Homodimeric murine interleukin 3 (mIL-3) agonists were generated by intermolecular cystine-bonding. Steady-state binding assays and association kinetics performed at 4 degrees C using these agonists revealed specific binding to both the high- and low-affinity receptor. DSS-mediated crosslinking studies performed at 4 degrees C with agonist concentrations compatible with high-affinity receptor complex formation allowed to detect protein complexes of the alpha chain, the beta chain(s) and the high-affinity receptor complex migrating with apparent molecular weights of 90 kDa, 140 kDa, and above 180 kDa, respectively. In contrast, monomeric mIL-3 was crosslinked to the alpha chain receptor only…

AgonistReceptor complexmedicine.drug_classMacromolecular SubstancesClinical BiochemistryInterleukin-17 receptorLigandsProtein Structure SecondaryCell LineMiceEndocrinologymedicineAnimalsReceptorProtease-activated receptor 2Interleukin 3Cell Line TransformedMolecular massChemistryGranulocyte-Macrophage Colony-Stimulating FactorCell BiologyLigand (biochemistry)Receptors Interleukin-3Recombinant ProteinsKineticsBiochemistryCystineBiological AssayElectrophoresis Polyacrylamide GelInterleukin-3Interleukin-5Cell DivisionThymidineGrowth factors (Chur, Switzerland)
researchProduct

Extracellular Domains of the Bradykinin B2 Receptor Involved in Ligand Binding and Agonist Sensing Defined by Anti-peptide Antibodies

1996

Many of the physiological functions of bradykinin are mediated via the B2 receptor. Little is known about binding sites for bradykinin on the receptor. Therefore, antisera against peptides derived from the putative extracellular domains of the B2 receptor were raised. The antibodies strongly reacted with their corresponding antigens and cross-reacted both with the denatured and the native B2 receptor. Affinity-purified antibodies to the various extracellular domains were used to probe the contact sites between the receptor and its agonist, bradykinin or its antagonist HOE140. Antibodies to extracellular domain 3 (second loop) efficiently interfered, in a concentration-dependent manner, with…

AgonistReceptor Bradykinin B2medicine.drug_classMolecular Sequence DataFluorescent Antibody TechniqueCHO CellsSpodopteraBradykininTransfectionBiochemistryAntibodiesProtein Structure SecondaryCell LineCricetinaeExtracellularmedicineAnimalsHumansAmino Acid SequenceBradykinin receptorBinding siteReceptorMolecular BiologyChemistryReceptors BradykininCell MembraneCell BiologyMolecular biologyPeptide FragmentsRecombinant ProteinsRatsCell biologyModels StructuralEctodomainCompetitive antagonistIntracellularJournal of Biological Chemistry
researchProduct

Dissection of the relative contribution of the Schizosaccharomyces pombe Ctr4 and Ctr5 proteins to the copper transport and cell surface delivery fun…

2011

The Ctr1 family of proteins mediates high-affinity copper (Cu) acquisition in eukaryotic organisms. In the fission yeastSchizosaccharomyces pombe, Cu uptake is carried out by a heteromeric complex formed by the Ctr4 and Ctr5 proteins. Unlike human andSaccharomyces cerevisiaeCtr1 proteins, Ctr4 and Ctr5 are unable to function independently in Cu acquisition. Instead, both proteins physically interact with each other to form a Ctr4–Ctr5 heteromeric complex, and are interdependent for secretion to the plasma membrane and Cu transport activity. In this study, we usedS. cerevisiaemutants that are defective in high-affinity Cu uptake to dissect the relative contribution of Ctr4 and Ctr5 to the Cu…

Amino Acid MotifsMutantSaccharomyces cerevisiaeSaccharomyces cerevisiaeBiologyMicrobiologySchizosaccharomycesHumansSecretionAmino Acid SequenceSLC31 ProteinsCation Transport ProteinsCell MembraneGenetic Complementation Testbiology.organism_classificationFusion proteinYeastProtein Structure TertiaryCell biologyComplementationTransmembrane domainBiochemistryCell and Molecular Biology of MicrobesSchizosaccharomyces pombeSchizosaccharomyces pombe ProteinsSequence AlignmentCopper
researchProduct

Amyloid Fibrils Formation of Concanavalin A at Basic pH

2011

Mechanisms of partial unfolding and aggregation of proteins are of extreme interest in view of the fact that several human pathologies are characterized by the formation and deposition of protein-insoluble material, mainly composed of amyloid fibrils. Here we report on an experimental study on the heat-induced aggregation mechanisms, at basic pH, of concanavalin A (ConA), used as a model system. Thioflavin T (ThT) fluorescence and multiangle light scattering allowed us to detect different intertwined steps in the formation of ConA aggregates. In particular, the ThT fluorescence increase, observed in the first phase of aggregation, reveals the formation of intermolecular β-sheet structure wh…

Amyloid Fibrils Concanavalin A Light scatteringAmyloidLightMultiangle light scatteringFibrilProtein Structure SecondaryLight scatteringchemistry.chemical_compoundPhase (matter)Scattering Small AngleConcanavalin AMaterials ChemistryBenzothiazolesPhysical and Theoretical ChemistrybiologyIntermolecular forceTemperatureHydrogen-Ion ConcentrationFluorescenceSurfaces Coatings and FilmsThiazolesCrystallographySpectrometry FluorescencechemistryConcanavalin ABiophysicsbiology.proteinThioflavinProtein MultimerizationThe Journal of Physical Chemistry B
researchProduct

Decoding vibrational states of Concanavalin A amyloid fibrils.

2015

International audience; Amyloid and amyloid-like fibrils are a general class of protein aggregates and represent a central topic in life sciences for their involvement in several neurodegenerative disorders and their unique mechanical and supramolecular morphological properties. Both their biological role and their physical properties, including their high mechanical stability and thermodynamic inertia, are related to the structural arrangement of proteins in the aggregates at molecular level. Significant variations may exist in the supramolecular organization of the commonly termed cross-β structure that constitutes the amyloid core. In this context, a fine knowledge of the structural deta…

AmyloidAbsorption spectroscopy[SDV]Life Sciences [q-bio]BiophysicsSupramolecular chemistry02 engineering and technologymacromolecular substancesProtein aggregationAntiparallel (biochemistry)FibrilSpectrum Analysis RamanBiochemistryVibrationProtein Structure Secondary03 medical and health sciencessymbols.namesakeSpectroscopy Fourier Transform InfraredConcanavalin AHumansFourier transform infrared spectroscopyRaman030304 developmental biology0303 health sciencesChemistryOrganic ChemistryIntermolecular force021001 nanoscience & nanotechnologyAmyloid FTIR RAMAN hydration water THz spectroscopy[SDV] Life Sciences [q-bio]CrystallographyFTIRTerahertz spectroscopysymbolsBiophysicsFibrils0210 nano-technologyRaman spectroscopy
researchProduct

Concanavalin A aggregation and toxicity on cell cultures

2009

A number of neurodegenerative diseases are known to involve protein aggregation. Common mechanisms and structural properties of amyloids are thought to be involved in aggregation-related cytotoxicity. In this context we propose an experimental study on Concanavalin A (Con A) aggregation and use it as a model to study the relationship between cell toxicity and aggregation processes. Depending on solution conditions, Con A aggregation has been monitored by static and dynamic light scattering, Thioflavin T emission, and FTIR absorption. The morphology of different aggregate species was verified by means of Atomic Force Microscopy and Confocal Microscopy. During the aggregation pathway the nati…

AmyloidCell SurvivalBiophysicsApoptosisContext (language use)Protein aggregationMicroscopy Atomic ForceFibrilBiochemistryAnalytical Chemistrychemistry.chemical_compoundProtein structureCell Line TumorSpectroscopy Fourier Transform InfraredConcanavalin AExtracellularHumansProtein Structure QuaternaryCytotoxicityMolecular BiologyNeuronsbiologyChemistryBiochemistryConcanavalin Abiology.proteinThioflavinProtein aggregation Amyloids Citotoxicity Oligomers
researchProduct

Cholesterol facilitates interactions between α‐synuclein oligomers and charge‐neutral membranes

2015

AbstractOligomeric species formed during α-synuclein fibrillation are suggested to be membrane-disrupting agents, and have been associated with cytotoxicity in Parkinson’s disease. The majority of studies, however, have revealed that the effect of α-synuclein oligomers is only noticeable on systems composed of anionic lipids, while the more physiologically relevant zwitterionic lipids remain intact. We present experimental evidence for significant morphological changes in zwitterionic membranes containing cholesterol, induced by α-synuclein oligomers. Depending on the lipid composition, model membranes are either unperturbed, disrupt, or undergo dramatic morphological changes and segregate …

AmyloidParkinson's diseaseFluorescent DyeBiophysicsPlasma protein bindingBiochemistryOligomerProtein Structure SecondaryMultiphoton microscopyMembrane phase separationCell membranechemistry.chemical_compoundGeneticStructural Biology2-NaphthylamineLaurdan fluorescenceGeneticsFluorescence microscopemedicineMolecular BiologyFluorescent DyesLaurateα-SynucleinMembranesChemistryMedicine (all)2-NaphthylamineCell MembraneMembraneCell BiologySettore FIS/07 - Fisica Applicata(Beni Culturali Ambientali Biol.e Medicin)CholesterolMembranemedicine.anatomical_structureBiophysicBiochemistryStructural biologyOligomeralpha-SynucleinParkinson’s diseaseProtein MultimerizationLaurdanLauratesProtein BindingFEBS Letters
researchProduct

Self-assembly of 3,5-bis(ethoxycarbonyl)pyrazolate anions and ammonium cations of β-phenylethylamine or homoveratrylamine into hetero-double-stranded…

2009

Hydrogen-bonded double-stranded hetero-helices are formed when reacting sodium 3,5-bis(ethoxycarbonyl)pyrazolate with beta-phenethylammonium or homoveratrylammonium chloride, in which one of the strands is defined by the ammonium cations and the other one by the pyrazolate anions.

AnionsCircular DichroismSodiumOrganic Chemistrychemistry.chemical_elementHydrogen BondingCrystallography X-RayBiochemistryChlorideProtein Structure SecondaryQuaternary Ammonium Compoundschemistry.chemical_compoundchemistryPhenethylaminesPolymer chemistrymedicineOrganic chemistryAmmoniumSelf-assemblyBeta-PhenylethylaminePhysical and Theoretical ChemistryDouble strandedmedicine.drugOrganic & Biomolecular Chemistry
researchProduct

Bax-derived membrane-active peptides act as potent and direct inducers of apoptosis in cancer cells.

2011

SUMMARYAlthough many cancer cells are primed for apoptosis, they usually develop resistance to cell death at multiple levels. Permeabilization of the outer mitochondrial membrane, which is mediated by proapoptotic Bcl-2 family members like Bax, is considered as a point-of-no-return for initiating apoptotic cell death. This crucial role has placed Bcl-2 family proteins as recurrent targets for anticancer drug development. Here, we propose and demonstrate a new concept based on using minimal active version of Bax to induce cell death independently of endogenous Bcl-2 proteins. We show that membrane-active segments of Bax can directly induce the release of mitochondria-residing apoptogenic fac…

ApoptosisMitochondrionMiceMESH: Protein Structure Tertiary0302 clinical medicineNeoplasmsgeneticsMESH: AnimalsMESH: Neoplasmsbcl-2-Associated X Protein0303 health sciencesbiologyMESH: PeptidesCytochrome capoptosisCytochromes cMESH: Cytochromes cproapoptotic BaxCell biologyMitochondriadrug therapymitochondria030220 oncology & carcinogenesisBacterial outer membraneProgrammed cell deathMESH: Cell Line TumorMESH: MitochondriaAntineoplastic Agents[SDV.CAN]Life Sciences [q-bio]/Cancerpore-forming peptideschemistryArticle03 medical and health sciencesBcl-2-associated X proteinBcl-2 familyCell Line TumorAnimalsHumansMESH: bcl-2-Associated X ProteinMESH: Mice030304 developmental biologyMESH: HumansMESH: ApoptosisBcl-2 familyCell BiologyProtein Structure Tertiaryanticancer agentantivascular therapyApoptosisdrug effectsCancer cellbiology.proteinMESH: Antineoplastic AgentspharmacologyphysiopathologyPeptidesmetabolism
researchProduct