Search results for "Protein kinase B"
showing 10 items of 191 documents
Endothelial Leptin Receptor Deletion Promotes Cardiac Autophagy and Angiogenesis Following Pressure Overload by Suppressing Akt/mTOR Signaling.
2019
Background: Cardiac remodeling is modulated by overnutrition or starvation. The adipokine leptin mediates energy balance between adipose tissue and brain. Leptin and its receptors are expressed in the heart. Methods and Results: To examine the importance of endothelial leptin signaling in cardiac hypertrophy, transverse aortic constriction was used in mice with inducible endothelium-specific deletion of leptin receptors (End.LepR-KO) or littermate controls (End.LepR-WT). End.LepR-KO was associated with improved left ventricular function (fractional shortening, 28.4% versus 18.8%; P =0.0114), reduced left ventricular dilation (end-systolic inner left ventricular diameter, 3.59 versus 4.08 m…
Synergistic antiangiogenic activity of bexarotene in combination with rosuvastatin by targeting ang-ii-mediated akt/mtor/p70s6k signaling pathway
2014
Heterometallic titanium–gold complexes inhibit renal cancer cells in vitro and in vivo
2015
Following recent work on heterometallic titanocene-gold complexes as potential chemotherapeutics for renal cancer, we report here on the synthesis, characterization and stability studies of new titanocene complexes containing a methyl group and a carboxylate ligand (mba = S-C6H4-COO-) bound to gold(I)-phosphane fragments through a thiolate group ([(η-C5H5)2TiMe(μ-mba)Au(PR3)]. The compounds are more stable in physiological media than those previously reported and are highly cytotoxic against human cancer renal cell lines. We describe here preliminary mechanistic data involving studies on the interaction of selected compounds with plasmid (pBR322) DNA used as a model nucleic acid, and with s…
The histone deacetylase sirtuin 2 is a new player in the regulation of platelet function
2015
SummaryBackground Histone deacetylases (HDACs) play a key role in signaling in many cell types. However, little is known about the participation of HDACs, particularly sirtuins (SIRTs), in platelet reactivity. Objective To investigate the role of HDACs in platelets, we examined the effects of SIRT inhibition on platelet function and protein acetylation in human platelets. Methods We used washed platelets obtained from healthy subjects. Cambinol (SIRT1 and SIRT2 inhibitor), AGK2 (specific SIRT2 inhibitor) and EX527 (specific SIRT1 inhibitor) were used as SIRT inhibitors. Platelets were stimulated with collagen, thrombin, or U46619, and platelet responses were determined according to optical …
A Neuroprotective Function for the Hematopoietic Protein Granulocyte-Macrophage Colony Stimulating Factor (GM-CSF)
2007
Granulocyte-macrophage colony-stimulating factor (GM-CSF) is a hematopoietic cytokine responsible for the proliferation, differentiation, and maturation of cells of the myeloid lineage, which was cloned more than 20 years ago. Here we uncovered a novel function of GM-CSF in the central nervous system (CNS). We identified the GM-CSF α-receptor as an upregulated gene in a screen for ischemia-induced genes in the cortex. This receptor is broadly expressed on neurons throughout the brain together with its ligand and induced by ischemic insults. In primary cortical neurons and human neuroblastoma cells, GM-CSF counteracts programmed cell death and induces BCL-2 and BCL-Xl expression in a dose- a…
The CB1 cannabinoid receptor signals striatal neuroprotection via a PI3K/Akt/mTORC1/BDNF pathway
2015
The CB1 cannabinoid receptor, the main molecular target of endocannabinoids and cannabis active components, is the most abundant G protein-coupled receptor in the mammalian brain. In particular, the CB1 receptor is highly expressed in the basal ganglia, mostly on terminals of medium-sized spiny neurons, where it plays a key neuromodulatory function. The CB1 receptor also confers neuroprotection in various experimental models of striatal damage. However, the assessment of the physiological relevance and therapeutic potential of the CB1 receptor in basal ganglia-related diseases is hampered, at least in part, by the lack of knowledge of the precise mechanism of CB1 receptor neuroprotective ac…
Incidence of oncogenes in PI3K/AKT and MAPK signaling pathways in breast cancer
2015
Novel pathway in Bcr-Abl signal transduction involves Akt-independent, PLC-γ1-driven activation of mTOR/p70S6-kinase pathway
2009
In chronic myeloid leukemia, activation of the phosphoinositide 3-kinase (PI3K)/Akt pathway is crucial for survival and proliferation of leukemic cells. Essential downstream molecules involve mammalian target of rapamycin (mTOR) and S6-kinase. Here, we present a comprehensive analysis of the molecular events involved in activation of these key signaling pathways. We provide evidence for a previously unrecognized phospholipase C-gamma1 (PLC-gamma1)-controlled mechanism of mTOR/p70S6-kinase activation, which operates in parallel to the classical Akt-dependent machinery. Short-term imatinib treatment of Bcr-Abl-positive cells caused dephosphorylation of p70S6-K and S6-protein without inactivat…
The novel NF-κB inhibitor DHMEQ synergizes with celecoxib to exert antitumor effects on human liver cancer cells by a ROS-dependent mechanism
2012
In a previous work of ours dehydroxymethyl-epoxyquinomicin (DHMEQ), an inhibitor of NF-κB, was shown to induce apoptosis through Reactive Oxygen Species (ROS) production in hepatoma cells. The present study demonstrated that DHMEQ cooperates with Celecoxib (CLX) to decrease NF-κB DNA binding and to inhibit cell growth and proliferation more effectively than treatment with these single agents alone in the hepatoma cell lines HA22T/VGH and Huh-6. ROS production induced by the DHMEQ-CLX combination in turn generated the expression of genes involved in endoplasmic reticulum (ER) stress and silencing TRB3 mRNA significantly decreased DHMEQ-CLX-induced cell growth inhibition. Moreover, the DHMEQ-…
SAHA induces apoptosis in hepatoma cells and synergistically interacts with the proteasome inhibitor Bortezomib.
2007
Histone deacetylase (HDAC) inhibitors represent a promising group of anticancer agents. This paper shows that the HDAC inhibitor suberoylanilide hydroxamic acid (SAHA) stimulated at 5-10 microM apoptosis in human hepatoma HepG2 and Huh6 cells, but was ineffective in primary human hepatocytes (PHH). In HepG2 cells SAHA induced the extrinsic apoptotic pathway, increasing the expression of both FasL and FasL receptor and causing the activation of caspase-8. Moreover, SAHA enhanced the level of Bim proteins, stimulated alternative splicing of the Bcl-X transcript with the expression of the proapoptotic Bcl-Xs isoform, induced degradation of Bid into the apoptotic factor t-Bid and dephosphorylat…