Search results for "Protein structure"

showing 10 items of 757 documents

Canonical azimuthal rotations and flanking residues constrain the orientation of transmembrane helices.

2013

AbstractIn biological membranes the alignment of embedded proteins provides crucial structural information. The transmembrane (TM) parts have well-defined secondary structures, in most cases α-helices and their orientation is given by a tilt angle and an azimuthal rotation angle around the main axis. The tilt angle is readily visualized and has been found to be functionally relevant. However, there exist no general concepts on the corresponding azimuthal rotation. Here, we show that TM helices prefer discrete rotation angles. They arise from a combination of intrinsic properties of the helix geometry plus the influence of the position and type of flanking residues at both ends of the hydrop…

Models MolecularQuantitative Biology::BiomoleculesPotassium ChannelsRotationChemistryCell MembraneMolecular Sequence DataBiophysicsMembraneMembrane ProteinsBiological membraneRotationTransmembrane proteinPeptide FragmentsProtein Structure SecondaryCore (optical fiber)CrystallographyTransmembrane domainChemical physicsOrientation (geometry)HelixPolarAmino Acid SequenceProtein MultimerizationProtein Structure QuaternaryBiophysical journal
researchProduct

Molecular dynamics simulation of carboxy-myoglobin embedded in a trehalose-water matrix

2001

AbstractWe report on a molecular dynamics (MD) simulation of carboxy-myoglobin (MbCO) embedded in a water-trehalose system. The mean square fluctuations of protein atoms, calculated at different temperatures in the 100–300K range, are compared with those from a previous MD simulation on an H2O-solvated MbCO and with experimental data from Mössbauer spectroscopy and incoherent elastic neutron scattering on trehalose-coated MbCO. The results show that, for almost all the atomic classes, the amplitude of the nonharmonic motions stemming from the interconversion among the protein’s conformational substates is reduced with respect to the H2O-solvated system, and their onset is shifted toward hig…

Models MolecularRange (particle radiation)MyoglobinProtein ConformationIronBiophysicsTrehaloseWaterHemeNeutron scatteringIn Vitro TechniquesTrehaloseMolecular physicsBiophysical Phenomenachemistry.chemical_compoundMolecular dynamicsCrystallographyAmplitudeProtein structureMyoglobinchemistryMössbauer spectroscopyAnimalsThermodynamicsResearch Article
researchProduct

Peptide Bond Formation Mechanism Catalyzed by Ribosome

2015

In this paper we present a study of the peptide bond formation reaction catalyzed by ribosome. Different mechanistic proposals have been explored by means of Free Energy Perturbation methods within hybrid QM/MM potentials, where the chemical system has been described by the M06-2X functional and the environment by means of the AMBER force field. According to our results, the most favorable mechanism in the ribosome would proceed through an eight-membered ring transition state, involving a proton shuttle mechanism through the hydroxyl group of the sugar and a water molecule. This transition state is similar to that described for the reaction in solution (J. Am. Chem. Soc. 2013, 135, 8708–871…

Models MolecularReaction mechanismProtein ConformationStereochemistryElectronsBiochemistryRibosomeArticleCatalysisCatalysisFree energy perturbationColloid and Surface ChemistryProtein structureComputational chemistryMoleculePeptide bondcatalysisChemistryGeneral Chemistrypeptide bond formationribosomeBiocatalysispeptidesBiocatalysisThermodynamicsPeptidesRibosomesJournal of the American Chemical Society
researchProduct

Theoretical Study of the Catalytic Mechanism of DNA-(N4-Cytosine)-Methyltransferase from the Bacterium Proteus vulgaris

2010

In this paper the reaction mechanism for methylation of cytosine at the exocyclic N4 position catalyzed by M.PvuII has been explored by means of hybrid quantum mechanics/molecular mechanics (QM/MM) methods. A reaction model was prepared by placing a single cytosine base in the active site of the enzyme. In this model the exocyclic amino group of the base establishes hydrogen bond interactions with the hydroxyl oxygen atom of Ser53 and the carbonyl oxygen atom of Pro54. The reaction mechanism involves a direct methyl transfer from AdoMet to the N4 atom and a proton transfer from this atom to Ser53, which in turn transfers a proton to Asp96. Different timings for the proton transfers and meth…

Models MolecularReaction mechanismProtonbiologyHydrogen bondStereochemistrySite-Specific DNA-Methyltransferase (Cytosine-N4-Specific)Active siteMethylationDNA MethylationPhotochemistryProtein Structure TertiarySurfaces Coatings and FilmsCatalysischemistry.chemical_compoundchemistryBiocatalysisMaterials Chemistrybiology.proteinProteus vulgarisQuantum TheoryPhysical and Theoretical ChemistryCytosineDNAThe Journal of Physical Chemistry B
researchProduct

Structural requirements for V2 vasopressin receptor proteolytic cleavage.

1999

The ligand-induced proteolytic cleavage of the V2 vasopressin receptor transiently expressed in COS cells was investigated. After incubation of the cell membranes with a photoreactive ligand possessing full agonistic properties for V2 receptors, approximately 90% of the porcine and bovine V2 vasopressin receptors were cleaved in the upper part of transmembrane helix 2 at a heptapeptide sequence conserved in both vasopressin and oxytocin receptors. The oxytocin receptor was completely resistant to proteolysis after binding the same photoreactive ligand, which is only a partial agonist for this receptor. Chimeric V2/oxytocin receptors obtained by transfer of extracellular domains of the oxyto…

Models MolecularReceptors VasopressinDNA ComplementaryTime FactorsProtein ConformationSwineMolecular Sequence DataBiologyLigandsTransfectionBiochemistryArginine vasopressin receptor 2Enzyme-linked receptorCyclic AMPAnimalsHumansPoint Mutation5-HT5A receptorAmino Acid SequenceCloning MolecularReceptorProtease-activated receptor 2Vasopressin receptorArginine vasopressin receptor 1BDose-Response Relationship DrugSequence Homology Amino AcidProteinsOxytocin receptorProtein Structure TertiaryEnzyme ActivationBiochemistryMicroscopy FluorescenceReceptors OxytocinType C PhospholipasesCOS CellsMutagenesis Site-DirectedCattlehormones hormone substitutes and hormone antagonistsAdenylyl CyclasesProtein BindingEuropean journal of biochemistry
researchProduct

Topology and accessibility of the transmembrane helices and the sensory site in the bifunctional transporter DcuB of Escherichia coli.

2011

C(4)-Dicarboxylate uptake transporter B (DcuB) of Escherichia coli is a bifunctional transporter that catalyzes fumarate/succinate antiport and serves as a cosensor of the sensor kinase DcuS. Sites and domains of DcuB were analyzed for their topology relative to the cytoplasmic or periplasmic side of the membrane and their accessibility to the water space. For the topology studies, DcuB was fused at 33 sites to the reporter enzymes PhoA and LacZ that are only active when located in the periplasm or the cytoplasm, respectively. The ratios of the PhoA and LacZ activities suggested the presence of 10 or 11 hydrophilic loops, and 11 or 12 α-helical transmembrane domains (TMDs). The central part…

Models MolecularRecombinant Fusion ProteinsMolecular Sequence Datalac operonTopologyBiochemistryProtein Structure SecondaryPolyethylene GlycolsProtein structureBacterial ProteinsCatalytic DomainStilbenesAmino Acid SequenceCysteineBinding sitePeptide sequenceDicarboxylic Acid TransportersEscherichia coli K12ChemistryEscherichia coli ProteinsCell MembranePeriplasmic spaceAlkaline PhosphataseTransmembrane domainMembrane proteinBiochemistryLac OperonEthylmaleimideSulfonic AcidsHydrophobic and Hydrophilic InteractionsCysteineBiochemistry
researchProduct

Kinetics of proton release and uptake by channelrhodopsin-2

2012

Electrophysiological experiments showed that the light-activated cation channel channelrhodopsin-2 (ChR2) pumps protons in the absence of a membrane potential. We determined here the kinetics of transient pH change using a water-soluble pH-indicator. It is shown that ChR2 released protons prior to uptake with a stoichiometry of 0.3 protons per ChR2. Comparison to the photocycle kinetics revealed that proton release and uptake match rise and decay of the View the MathML sourceP3520 intermediate. As the View the MathML sourceP3520 state also represents the conductive state of cation channeling, the concurrence of proton pumping and channel gating implies an intimate mechanistic link of the tw…

Models MolecularRhodopsinProtonKineticsBiophysicsAnalytical chemistryChannelrhodopsinBacteriorhodopsinBiochemistry530Protein Structure SecondaryProton transferStructural BiologyGeneticsMolecular BiologyIon channelMembrane potentialbiologyChemistryfungiBacteriorhodopsinBiological TransportCell BiologyHydrogen-Ion ConcentrationProton PumpsOptogeneticsKineticsRhodopsinBiophysicsbiology.proteinProtonsIon channelStoichiometry
researchProduct

Structural Characterization of Set1 RNA Recognition Motifs and their Role in Histone H3 Lysine 4 Methylation

2006

Departament de Bioquimica iBiologia Molecular, Universitatde Valencia, C/Dr Moliner 50,46100, Burjassot, SpainThe yeast Set1 histone H3 lysine 4 (H3K4) methyltransferase contains, inaddition to its catalytic SET domain, a conserved RNA recognition motif(RRM1). We present here the crystal structure and the secondary structureassignment in solution of the Set1 RRM1. Although RRM1 has the expectedβαββαβ RRM-fold, it lacks the typical RNA-binding features of thesemodules. RRM1 is not able to bind RNA by itself in vitro, but a constructcombining RRM1 with a newly identified downstream RRM2 specificallybinds RNA. Invivo,H3K4 methylation isnot affectedbyapoint mutation inRRM2 that preserves Set1 s…

Models MolecularRiboswitchHistone H3 Lysine 4Saccharomyces cerevisiae ProteinsRNA-induced transcriptional silencingSurface Properties[SDV]Life Sciences [q-bio]Molecular Sequence DataSaccharomyces cerevisiae[SDV.BC.BC]Life Sciences [q-bio]/Cellular Biology/Subcellular Processes [q-bio.SC]BiologyMethylationHistonesStructure-Activity Relationship03 medical and health sciencesStructural BiologyHistone methylation[SDV.BC.BC] Life Sciences [q-bio]/Cellular Biology/Subcellular Processes [q-bio.SC]Amino Acid SequenceProtein Structure QuaternaryMolecular BiologyConserved Sequence030304 developmental biology0303 health sciencesRNA recognition motifLysine030302 biochemistry & molecular biologyRNARNA FungalHistone-Lysine N-MethyltransferaseNon-coding RNAMolecular biology[SDV] Life Sciences [q-bio]DNA-Binding ProteinsProtein SubunitsBiochemistryHistone methyltransferaseSequence AlignmentProtein BindingTranscription Factors
researchProduct

Atomic structure of the major capsid protein of rotavirus: implications for the architecture of the virion

2001

The structural protein VP6 of rotavirus, an important pathogen responsible for severe gastroenteritis in children, forms the middle layer in the triple-layered viral capsid. Here we present the crystal structure of VP6 determined to 2 A resolution and describe its interactions with other capsid proteins by fitting the atomic model into electron cryomicroscopic reconstructions of viral particles. VP6, which forms a tight trimer, has two distinct domains: a distal beta-barrel domain and a proximal alpha-helical domain, which interact with the outer and inner layer of the virion, respectively. The overall fold is similar to that of protein VP7 from bluetongue virus, with the subunits wrapping …

Models MolecularRotavirusCations DivalentViral proteinvirusesMolecular Sequence DataHemagglutinins ViralTrimerCrystal structureBiologyCrystallography X-Raymedicine.disease_causeProtein Structure SecondaryArticleGeneral Biochemistry Genetics and Molecular BiologyVirus03 medical and health sciencesCapsidRotavirusAtomic modelmedicineAnimalsAmino Acid SequenceAntigens ViralMolecular BiologyPeptide sequence030304 developmental biology0303 health sciencesSequence Homology Amino AcidGeneral Immunology and Microbiology030306 microbiologyViral Core ProteinsGeneral NeuroscienceVirionvirus diseasesMolecular biologyZincCapsidSolventsBiophysicsCapsid ProteinsCattleThe EMBO Journal
researchProduct

Homology modeling using simulated annealing of restrained molecular dynamics and conformational search calculations with CONGEN: application in predi…

1997

We have developed an automatic approach for homology modeling using restrained molecular dynamics and simulated annealing procedures, together with conformational search algorithms available in the molecular mechanics program CONGEN (Bruccoleri RE, Karplus M, 1987, Biopolymers 26:137-168). The accuracy of the method is validated by "predicting" structures of two homeodomain proteins with known three-dimensional structures, and then applied to predict the three-dimensional structure of the homeodomain of the murine Msx-1 transcription factor. Regions of the unknown protein structure that are highly homologous to the known template structure are constrained by "homology distance constraints,"…

Models MolecularSaccharomyces cerevisiae ProteinsProtein ConformationMSX1 Transcription FactorMolecular Sequence DataSaccharomyces cerevisiaeBiologyProtein EngineeringBiochemistryProtein Structure SecondaryMolecular dynamicsMiceProtein structureAnimalsComputer SimulationHomology modelingAmino Acid SequenceMolecular BiologyHomeodomain ProteinsMSX1 Transcription FactorSequence Homology Amino AcidNuclear ProteinsProtein engineeringProtein superfamilyengrailedRepressor ProteinsCrystallographyAntennapedia Homeodomain ProteinThreading (protein sequence)AlgorithmsInformation SystemsTranscription FactorsResearch ArticleProtein science : a publication of the Protein Society
researchProduct