Search results for "Pseudogene"
showing 10 items of 44 documents
2019
PIWI proteins and their guiding Piwi-interacting (pi-) RNAs direct the silencing of target nucleic acids in the animal germline and soma. Although in mammal testes fetal piRNAs are involved in extensive silencing of transposons, pachytene piRNAs have additionally been shown to act in post-transcriptional gene regulation. The bulk of pachytene piRNAs is produced from large genomic loci, named piRNA clusters. Recently, the presence of reversed pseudogenes within piRNA clusters prompted the idea that piRNAs derived from such sequences might direct regulation of their parent genes. Here, we examine primate piRNA clusters and integrated pseudogenes in a comparative approach to gain a deeper unde…
Genome reduction of the aphid endosymbiont Buchnera aphidicola in a recent evolutionary time scale.
2007
International audience; Genome reduction, a typical feature of symbiotic bacteria, was analyzed in the last stages of evolution of Buchnera aphidicola, the primary aphid endosymbiont, in two neutrally evolving regions: the pseudogene cmk and an intergenic region. These two regions were examined in endosymbionts from several lineages of their aphid host Rhopalosiphum padi, and different species of the same genus, whose divergence times ranged from 0.62 to 19.51 million years. Estimates of nucleotide substitution rates were between 4.3 and 6.7 x 10(-9) substitution/site/year, with G or C nucleotides being substituted around four times more frequently than A or T. Two different types of indel …
A Methodology to Study Pseudogenized lincRNAs
2021
Long intergenic noncoding RNAs (lincRNAs) are known to be tissue specifically expressed and able to regulate functional protein-coding genes: some can even act as competing endogenous RNAs (ceRNAs), because microRNAs can bind to them instead of the corresponding mRNA binding sites. Some lincRNAs contain remnants of protein-coding sequences and it has been hypothesized that they might arise after a pseudogenization processes. However, a major limitation in the study of such phenomenon is the lack of proper computational tools designed to align/analyze protein-coding sequences and noncoding sequences. To overcome this limitation, we published a method that finds the remnants of protein-coding…
Conserved Organisation of 45S rDNA Sites and rDNA Gene Copy Number among Major Clades of Early Land Plants
2016
Genes encoding ribosomal RNA (rDNA) are universal key constituents of eukaryotic genomes, and the nuclear genome harbours hundreds to several thousand copies of each species. Knowledge about the number of rDNA loci and gene copy number provides information for comparative studies of organismal and molecular evolution at various phylogenetic levels. With the exception of seed plants, the range of 45S rDNA locus (encoding 18S, 5.8S and 26S rRNA) and gene copy number variation within key evolutionary plant groups is largely unknown. This is especially true for the three earliest land plant lineages Marchantiophyta (liverworts), Bryophyta (mosses), and Anthocerotophyta (hornworts). In this work…
To B or Not to B: Comparative Genomics Suggests Arsenophonus as a Source of B Vitamins in Whiteflies
2018
Insect lineages feeding on nutritionally restricted diets such as phloem sap, xylem sap, or blood, were able to diversify by acquiring bacterial species that complement lacking nutrients. These bacteria, considered obligate/primary endosymbionts, share a long evolutionary history with their hosts. In some cases, however, these endosymbionts are not able to fulfill all of their host's nutritional requirements, driving the acquisition of additional symbiotic species. Phloem-feeding members of the insect family Aleyrodidae (whiteflies) established an obligate relationship with Candidatus Portiera aleyrodidarum, which provides its hots with essential amino acids and carotenoids. In addition, ma…
Engineered Functional Redundancy Relaxes Selective Constraints upon Endogenous Genes in Viral RNA Genomes
2018
Functional redundancy, understood as the functional overlap of different genes, is a double-edge sword. At the one side, it is thought to serve as a robustness mechanism that buffers the deleterious effect of mutations hitting one of the redundant copies, thus resulting in pseudogenization. At the other side, it is considered as a source of genetic and functional innovation. In any case, genetically redundant genes are expected to show an acceleration in the rate of molecular evolution. Here, we tackle the role of functional redundancy in viral RNA genomes. To this end, we have evaluated the rates of compensatory evolution for deleterious mutations affecting an essential function, the suppr…
Identification of transcribed protein coding sequence remnants within lincRNAs
2018
Abstract Long intergenic non-coding RNAs (lincRNAs) are non-coding transcripts >200 nucleotides long that do not overlap protein-coding sequences. Importantly, such elements are known to be tissue-specifically expressed and to play a widespread role in gene regulation across thousands of genomic loci. However, very little is known of the mechanisms for the evolutionary biogenesis of these RNA elements, especially given their poor conservation across species. It has been proposed that lincRNAs might arise from pseudogenes. To test this systematically, we developed a novel method that searches for remnants of protein-coding sequences within lincRNA transcripts; the hypothesis is that we can t…
ceRNA Network Regulation of TGF-β, WNT, FOXO, Hedgehog Pathways in the Pharynx of Ciona robusta
2021
The transforming growth factor-β (TGF-β) family of cytokines performs a multifunctional signaling, which is integrated and coordinated in a signaling network that involves other pathways, such as Wintless, Forkhead box-O (FOXO) and Hedgehog and regulates pivotal functions related to cell fate in all tissues. In the hematopoietic system, TGF-β signaling controls a wide spectrum of biological processes, from immune system homeostasis to the quiescence and self-renewal of hematopoietic stem cells (HSCs). Recently an important role in post-transcription regulation has been attributed to two type of ncRNAs: microRNAs and pseudogenes. Ciona robusta, due to its philogenetic position close to verte…
Incipient genome erosion and metabolic streamlining for antibiotic production in a defensive symbiont
2021
Significance Genome reduction is commonly observed in bacteria of several phyla engaging in obligate nutritional symbioses with insects. In Actinobacteria, however, little is known about the process of genome evolution, despite their importance as prolific producers of antibiotics and their increasingly recognized role as defensive partners of insects and other organisms. Here, we show that “Streptomyces philanthi,” a defensive symbiont of digger wasps, has a G+C-enriched genome in the early stages of erosion, with inactivating mutations in a large proportion of genes, causing dependency on its hosts for certain nutrients, which was validated in axenic symbiont cultures. Additionally, overe…
Serratia symbiotica from the aphid Cinara cedri: a missing link from facultative to obligate insect endosymbiont.
2011
The genome sequencing of Buchnera aphidicola BCc from the aphid Cinara cedri, which is the smallest known Buchnera genome, revealed that this bacterium had lost its symbiotic role, as it was not able to synthesize tryptophan and riboflavin. Moreover, the biosynthesis of tryptophan is shared with the endosymbiont Serratia symbiotica SCc, which coexists with B. aphidicola in this aphid. The whole-genome sequencing of S. symbiotica SCc reveals an endosymbiont in a stage of genome reduction that is closer to an obligate endosymbiont, such as B. aphidicola from Acyrthosiphon pisum, than to another S. symbiotica, which is a facultative endosymbiont in this aphid, and presents much less gene decay…