Search results for "Pseudopotentials"
showing 8 items of 8 documents
High-pressure lattice dynamics in wurtzite and rocksalt indium nitride investigated by means of Raman spectroscopy
2013
We present an experimental and theoretical lattice-dynamical study of InN at high hydrostatic pressures. We perform Raman scattering measurements on five InN epilayers, with different residual strain and free electron concentrations. The experimental results are analyzed in terms of ab initio lattice-dynamical calculations on both wurtzite InN (w-InN) and rocksalt InN (rs-InN) as a function of pressure. Experimental and theoretical pressure coefficients of the optical modes in w-InN are compared, and the role of residual strain on the measured pressure coefficients is analyzed. In the case of the LO band, we analyze and discuss its pressure behavior considering the double-resonance mechanis…
Regularized pseudopotential for mean-field calculations
2019
We present preliminary results obtained with a finite-range two-body pseudopotential complemented with zero-range spin-orbit and density-dependent terms. After discussing the penalty function used to adjust parameters, we discuss predictions for binding energies of spherical nuclei calculated at the mean-field level, and we compare them with those obtained using the standard Gogny D1S finite-range effective interaction.
InN thin film lattice dynamics by grazing incidence inelastic x-ray scattering.
2011
Achieving comprehensive information on thin film lattice dynamics so far has eluded well established spectroscopic techniques. We demonstrate here the novel application of grazing incidence inelastic x-ray scattering combined with ab initio calculations to determine the complete elastic stiffness tensor, the acoustic and low-energy optic phonon dispersion relations of thin wurtzite indium nitride films. Indium nitride is an especially relevant example, due to the technological interest for optoelectronic and solar cell applications in combination with other group III nitrides.
Wannier90 as a community code: new features and applications
2019
Wannier90 is an open-source computer program for calculating maximally-localised Wannier functions (MLWFs) from a set of Bloch states. It is interfaced to many widely used electronic-structure codes thanks to its independence from the basis sets representing these Bloch states. In the past few years the development of Wannier90 has transitioned to a community-driven model; this has resulted in a number of new developments that have been recently released in Wannier90 v3.0. In this article we describe these new functionalities, that include the implementation of new features for wannierisation and disentanglement (symmetry-adapted Wannier functions, selectively-localised Wannier functions, s…
Landau parameters for energy density functionals generated by local finite-range pseudopotentials
2017
In Landau theory of Fermi liquids, the particle-hole interaction near the Fermi energy in different spin-isospin channels is probed in terms of an expansion over the Legendre polynomials. This provides a useful and efficient way to constrain properties of nuclear energy density functionals in symmetric nuclear matter and finite nuclei. In this study, we present general expressions for Landau parameters corresponding to a two-body central local regularized pseudopotential. We also show results obtained for two recently adjusted NLO and N$^2$LO parametrizations. Such pseudopotentials will be used to determine mean-field and beyond-mean-field properties of paired nuclei across the entire nucle…
Nonlocal energy density functionals for pairing and beyond-mean-field calculations
2017
We propose to use two-body regularized finite-range pseudopotential to generate nuclear energy density functional (EDF) in both particle-hole and particle-particle channels, which makes it free from self-interaction and self-pairing, and also free from singularities when used beyond mean field. We derive a sequence of pseudopotentials regularized up to next-to-leading order (NLO) and next-to-next-to-leading order (N2LO), which fairly well describe infinite-nuclear-matter properties and finite open-shell paired and/or deformed nuclei. Since pure two-body pseudopotentials cannot generate sufficiently large effective mass, the obtained solutions constitute a preliminary step towards future imp…
Cation Environment of BaCeO3−Based Protonic Conductors II: New Computational Models
2011
Quantum chemical calculations have been carried out to simulate Y-doped BaCeO(3) derivatives. Hartree-Fock energy functional was used to study octahedral site environments embedded in a Pmcn orthorhombic framework, showing local arrangement characterized by Ce-O-Ce, Ce-O-Y, and Y-O-Y (Z-O-Ξ) configurations and including or not hydrogen close to the moieties encompassing those configurations. The latter are, in fact, representative of - and, in our modeling approach, were treated as - local arrangements that could be found in Y:BaCeO(3)-doped materials. The geometrical optimizations performed on the structural models and a detailed orbital analysis of these systems allowed us to confirm and …
Higher-order energy density functionals in nuclear self-consistent theory
2011
In this thesis consisting of two publications and an overview part, a study of two aspects of energy density functionals has been performed. Firstly, we have linked the next-to-next-to-next-to-leading order nuclear energy density functional to a zero-range pseudopotential that includes all possible terms up to sixth order in derivatives. Within the Hartree-Fock approximation, the quasi-local nuclear Energy Density Functional (EDF) has been calculated as the average energy obtained from the pseudopotential. The direct reference of the EDF to the pseudopotential acts as a constraint that allows for expressing the isovector coupling constants functional in terms of the isoscalar ones, or vice …