Search results for "Pullback"

showing 8 items of 8 documents

Attractors of stochastic lattice dynamical systems with a multiplicative noise and non-Lipschitz nonlinearities

2012

AbstractIn this paper we study the asymptotic behavior of solutions of a first-order stochastic lattice dynamical system with a multiplicative noise.We do not assume any Lipschitz condition on the nonlinear term, just a continuity assumption together with growth and dissipative conditions, so that uniqueness of the Cauchy problem fails to be true.Using the theory of multi-valued random dynamical systems we prove the existence of a random compact global attractor.

Dynamical systems theoryApplied MathematicsRandom attractorsMathematical analysisMultiplicative noisePullback attractorLipschitz continuityMultiplicative noiseSet-valued dynamical systemLinear dynamical systemProjected dynamical systemStochastic lattice differential equationsAttractorRandom dynamical systemAnalysisMathematicsJournal of Differential Equations
researchProduct

On the Kneser property for reaction–diffusion equations in some unbounded domains with an -valued non-autonomous forcing term

2012

Abstract In this paper, we prove the Kneser property for a reaction–diffusion equation on an unbounded domain satisfying the Poincare inequality with an external force taking values in the space H − 1 . Using this property of solutions we check also the connectedness of the associated global pullback attractor. We study also similar properties for systems of reaction–diffusion equations in which the domain is the whole R N . Finally, the results are applied to a generalized logistic equation.

Forcing (recursion theory)Social connectednessApplied MathematicsMathematical analysisPoincaré inequalityPullback attractorSpace (mathematics)Domain (mathematical analysis)symbols.namesakeReaction–diffusion systemsymbolsLogistic functionAnalysisMathematicsNonlinear Analysis: Theory, Methods & Applications
researchProduct

On Fibrations Between Internal Groupoids and Their Normalizations

2018

We characterize fibrations and $$*$$ -fibrations in the 2-category of internal groupoids in terms of the comparison functor from certain pullbacks to the corresponding strong homotopy pullbacks. As an application, we deduce the internal version of the Brown exact sequence for $$*$$ -fibrations from the internal version of the Gabriel–Zisman exact sequence. We also analyse fibrations and $$*$$ -fibrations in the category of arrows and study when the normalization functor preserves and reflects them. This analysis allows us to give a characterization of protomodular categories using strong homotopy kernels and a generalization of the Snake Lemma.

Normalization (statistics)Pure mathematicsInternal groupoid Fibration Strong h-pullback Protomodular categoryGeneral Computer ScienceFibrationSnake lemmaStrong h-pullbackMathematics::Algebraic Topology01 natural sciencesTheoretical Computer ScienceMathematics::Algebraic GeometryMathematics::K-Theory and HomologyMathematics::Category Theory0103 physical sciences0101 mathematicsMathematics::Symplectic GeometryMathematicsExact sequenceInternal groupoidAlgebra and Number TheoryFunctorHomotopy010102 general mathematicsFibrationInternal versionSettore MAT/02 - AlgebraProtomodular categoryTheory of computation010307 mathematical physicsApplied Categorical Structures
researchProduct

Another Easy one: This Time in the Other Direction

2016

A simple representative case of FFR in a focal stenosis which, however, does not induce an FFR blunting below 0.80. The existence of a gradient is confirmed at pullback.

PullbackSimple (abstract algebra)Mathematical analysisMathematics
researchProduct

Bipullbacks of fractions and the snail lemma

2017

Abstract We establish conditions giving the existence of bipullbacks in bicategories of fractions. We apply our results to construct a π 0 - π 1 exact sequence associated with a fractor between groupoids internal to a pointed exact category.

Pure mathematicsLemma (mathematics)Exact sequenceInternal groupoidAlgebra and Number Theory010102 general mathematicsMathematics - Category TheoryBicategory of fraction18B40 18D05 18E35 18G5001 natural sciencesMathematics::Algebraic TopologySettore MAT/02 - AlgebraExact categoryMathematics::K-Theory and HomologyMathematics::Category Theory0103 physical sciencesFOS: MathematicsBipullbackSnail lemmaCategory Theory (math.CT)010307 mathematical physics0101 mathematicsMathematics
researchProduct

The ziqqurath of exact sequences of n-groupoids

2011

In this work we study exactness in the sesqui-category of n-groupoids. Using homotopy pullbacks, we construct a six term sequence of (n-1)-groupoids from an n-functor between pointed n-groupoids. We show that the sequence is exact in a suitable sense, which generalizes the usual notions of exactness for groups and categorical groups. Moreover, iterating the process, we get a ziqqurath of exact sequences of increasing length and decreasing dimension. For n = 1 we recover a classical result due to R. Brown and, for n = 2 its generalizations due to Hardie, Kamps and Kieboom and to Duskin, Kieboom and Vitale.

Settore MAT/02 - Algebran-groupoids homotopy pullbacks exact sequencesSettore MAT/03 - Geometria
researchProduct

Attractors for non-autonomous retarded lattice dynamical systems

2015

AbstractIn this paperwe study a non-autonomous lattice dynamical system with delay. Under rather general growth and dissipative conditions on the nonlinear term,we define a non-autonomous dynamical system and prove the existence of a pullback attractor for such system as well. Both multivalued and single-valued cases are considered.

Statistics and ProbabilityDifferential equations with delayDynamical systems theoryNon-autonomous systemslattice dynamical systemsPullback attractorHamiltonian systemLinear dynamical systemProjected dynamical systemAttractorQA1-939pullback attractorMathematicsNumerical AnalysisApplied MathematicsMathematical analysisdifferential equations with delaynon-autonomous systemsClassical mechanicsLattice dynamical systemsPullback attractorset-valued dynamical systemsSet-valued dynamical systemsLimit setRandom dynamical systemMathematicsAnalysis
researchProduct

Multiple Lesions, Multiple Measures

2016

This case describes the assessment of FFR in the case of tandem intermediate lesions in the proximal and mid LAD. Hyperemia was induced with intravenous (IV) infusion of Adenosine, which allows pullback measurements. First, with the wire placed distal in the vessel, FFR provides information on whether the sum of the two stenoses causes ischemia. Thereafter, during pullback, the most severe stenosis can be identified as the most relevant pressure drop. Finally, a re-evaluation of FFR is important after PCI: after the first stenosis is treated, the degree of hyperemia achievable will be larger, thus unmasking the relevance of the second one.

medicine.medical_specialtybusiness.industryIschemiamedicine.diseaseStenosisPullbackInternal medicineConventional PCIcardiovascular systemmedicineCardiologycardiovascular diseasesSevere stenosisbusiness
researchProduct