Search results for "Pulsars"

showing 10 items of 68 documents

Diving below the spin-down limit: Constraints on gravitational waves from the energetic young pulsar PSR J0537-6910

2021

We present a search for continuous gravitational-wave signals from the young, energetic X-ray pulsar PSR J0537-6910 using data from the second and third observing runs of LIGO and Virgo. The search is enabled by a contemporaneous timing ephemeris obtained using NICER data. The NICER ephemeris has also been extended through 2020 October and includes three new glitches. PSR J0537-6910 has the largest spin-down luminosity of any pulsar and is highly active with regards to glitches. Analyses of its long-term and inter-glitch braking indices provided intriguing evidence that its spin-down energy budget may include gravitational-wave emission from a time-varying mass quadrupole moment. Its 62 Hz …

010504 meteorology & atmospheric sciencesAstronomyAstrophysicsEP/ T017325/101 natural sciencesrotationGeneral Relativity and Quantum CosmologyPSR J0537−6910neutron starsLuminosityGravitatational Waves PSR J0537−6910 LIGO VirgoHISTORYLIGOSupernova remnantneutron star010303 astronomy & astrophysicsgravitational waveQCQBpulsarPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Settore FIS/03N157BPhysics/dk/atira/pure/sustainabledevelopmentgoals/partnershipsGravitational waves neutron stars pulsarEPSRCPhysical Sciencesmoment: multipole[PHYS.GRQC]Physics [physics]/General Relativity and Quantum Cosmology [gr-qc]Astrophysics - High Energy Astrophysical PhenomenaGravitational wavedata analysis methodPSR J0537-6910Astrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesGeneral Relativity and Quantum Cosmology (gr-qc)Astronomy & AstrophysicsEphemeris1ST SEARCHGravitational wavesX-raySDG 17 - Partnerships for the GoalsPulsar0103 physical sciences/dk/atira/pure/subjectarea/asjc/1900/1912X-ray: emissiongravitational waves; pulsars; PSR J0537-6910; neutron starsSTFCAstrophysics::Galaxy Astrophysics0105 earth and related environmental sciencesScience & TechnologyNeutron Star Interior Composition ExplorerR-MODEGravitational waveVirgopulsar: rotationRCUKAstronomy and AstrophysicsLIGONeutron starVIRGOSUPERNOVA REMNANTSpace and Planetary Sciencegravitational radiation: emissionpulsars/dk/atira/pure/subjectarea/asjc/3100/3103Gravitatational Waves[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]
researchProduct

Subarcsecond Location of IGR J17480-2446 with Rossi XTE

2012

On 2010 October 13, the X-ray astronomical satellite Rossi XTE, during the observation of the newly discovered accretion powered X-ray pulsar IGR J17480--2446, detected a lunar occultation of the source. From knowledge of lunar topography and Earth, Moon, and spacecraft ephemeris at the epoch of the event, we determined the source position with an accuracy of 40 mas (1{\sigma} c.l.), which is interesting, given the very poor imaging capabilities of RXTE (\sim 1\circ). For the first time, using a non-imaging X-ray observatory, the position of an X-ray source with a subarcsecond accuracy is derived, demonstrating the neat capabilities of a technique that can be fruitfully applied to current a…

010504 meteorology & atmospheric sciencesAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesEphemeris01 natural sciencesOccultationSettore FIS/05 - Astronomia E AstrofisicaPulsarObservatory0103 physical sciences010303 astronomy & astrophysics0105 earth and related environmental sciencesPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Spacecraftbusiness.industryAstrophysics::Instrumentation and Methods for AstrophysicsAstronomyAstronomy and AstrophysicsAccretion (astrophysics)general pulsars: individual: IGR J17480-2446 stars: neutron X-rays: binaries [Moon pulsars]Moon pulsars: general pulsars: individual: IGR J17480-2446 stars: neutron X-rays: binariesSpace and Planetary SciencePhysics::Space PhysicsAstrophysics::Earth and Planetary AstrophysicsAstrophysics - High Energy Astrophysical Phenomenabusiness
researchProduct

Pulsating in Unison at Optical and X-Ray Energies: Simultaneous High Time Resolution Observations of the Transitional Millisecond Pulsar PSR J1023+00…

2019

PSR J1023+0038 is the first millisecond pulsar discovered to pulsate in the visible band; such a detection took place when the pulsar was surrounded by an accretion disk and also showed X-ray pulsations. We report on the first high time resolution observational campaign of this transitional pulsar in the disk state, using simultaneous observations in the optical (TNG, NOT, TJO), X-ray (XMM-Newton, NuSTAR, NICER), infrared (GTC) and UV (Swift) bands. Optical and X-ray pulsations were detected simultaneously in the X-ray high intensity mode in which the source spends $\sim$ 70% of the time, and both disappeared in the low mode, indicating a common underlying physical mechanism. In addition, o…

AccretionAccretion disks-pulsars: Individual (psr j1023+0038)-stars: Neutron-X-rays: Binaries010504 meteorology & atmospheric sciencesAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesAstrophysics01 natural sciencesSettore FIS/05 - Astronomia E AstrofisicaPulsarAccretion discMillisecond pulsar0103 physical sciencesAstrophysics::Solar and Stellar Astrophysics010303 astronomy & astrophysicsAstrophysics::Galaxy Astrophysics0105 earth and related environmental sciencesHigh Energy Astrophysical Phenomena (astro-ph.HE)PhysicsAstrophysics::Instrumentation and Methods for AstrophysicsX-rayAstronomy and AstrophysicsTime resolutionAccretion (astrophysics)Space and Planetary ScienceVisible bandAstrophysics::Earth and Planetary AstrophysicsAstrophysics - High Energy Astrophysical PhenomenaThe Astrophysical Journal
researchProduct

NuSTAR and NICER reveal IGR J17591-2342 as a new accreting millisecond X-ray pulsar

2018

We report the discovery by the Nuclear Spectroscopic Telescope Array (NuSTAR) and the Neutron Star Interior Composition Explorer (NICER) of the accreting millisecond X-ray pulsar IGR J17591-2342. Coherent X-ray pulsations around 527.4 Hz (1.9 ms) with a clear Doppler modulation were detected. This implies an orbital period of ∼8.8 h and a projected semi-major axis of ∼1.23 lt-s. With the binary mass function, we estimate a minimum companion mass of 0.42 M, obtained assuming a neutron star mass of 1.4[subscript ⊙] and an inclination angle lower than 60°, as suggested by the absence of eclipses or dips in the light curve of the source. The broad-band energy spectrum, obtained by combining NuS…

AccretionAstrophysics::High Energy Astrophysical Phenomenageneral [Pulsars]FOS: Physical sciencesAstrophysicsAstrophysics::Cosmology and Extragalactic Astrophysics01 natural sciencesSpectral linelaw.inventionTelescopeX-rays: binariesSettore FIS/05 - Astronomia E AstrofisicaPulsarlow-mass [Stars]lawstars: low-mass0103 physical sciencesStars: low-maAstrophysics::Solar and Stellar Astrophysics010303 astronomy & astrophysicsAstrophysics::Galaxy AstrophysicsPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Neutron Star Interior Composition Explorer010308 nuclear & particles physicsComputer Science::Information Retrievalaccretion disksneutron [Stars]Astronomy and AstrophysicsAstronomy and AstrophysicOrbital periodLight curveX-rays: binarieStars: neutronNeutron starPulsars: generalAccretion diskSpace and Planetary ScienceAccretion disksbinaries [X-rays]Astrophysics::Earth and Planetary AstrophysicsAstrophysics - High Energy Astrophysical Phenomena[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]X-ray pulsar
researchProduct

INTEGRAL observations of the peculiar BeX System SAX J2103.5+4545

2004

We present an INTEGRAL data analysis of the X-ray transient \object{SAX J2103.5+4545} during two outbursts detected in December 2002. The INTEGRAL coordinates and error circle agree with the position of the recently proposed optical counterpart. A power-law plus cut-off model provided a good fit to the 4-150 keV spectrum yielding a photon index of 1.0+-0.1, a cut-off energy E_cut=7.6+-2.0 keV and a folding energy E_fold=30.9+-2.5 keV. The X-ray luminosity in the 4-150 keV energy range was found to be 6.0x10^36 erg/s, assuming a distance of 6.5 kpc. This luminosity, together with the derived photon index, indicate that the source is in a bright state. A 354.9$+-0.5 second pulse period is mea…

AccretionPhotonAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesValue (computer science)AstrophysicsUNESCO::ASTRONOMÍA Y ASTROFÍSICAAstrophysicsLuminosityPulse periodPosition (vector)X-raysBright statePhysicsRange (particle radiation)Astrophysics (astro-ph)BinariesSAX J2103.5+4545 [Pulsars]BeAstronomy and Astrophysics:ASTRONOMÍA Y ASTROFÍSICA::Cosmología y cosmogonia [UNESCO]Space and Planetary ScienceAccretion disksUNESCO::ASTRONOMÍA Y ASTROFÍSICA::Cosmología y cosmogoniaEmission-lineAccretion ; Accretion disks ; Binaries ; Emission-line ; Be ; Pulsars : SAX J2103.5+4545 ; X-rays ; Binaries:ASTRONOMÍA Y ASTROFÍSICA [UNESCO]Energy (signal processing)Astronomy & Astrophysics
researchProduct

On the timing properties of SAX J1808.4-3658 during its 2015 outburst

2017

We present a timing analysis of the 2015 outburst of the accreting millisecond X-ray pulsar SAX J1808.4-3658, using non-simultaneous XMM-Newton and NuStar observations. We estimate the pulsar spin frequency and update the system orbital solution. Combining the average spin frequency from the previous observed, we confirm the long-term spin down at an average rate $\dot{\nu}_{\text{SD}}=1.5(2)\times 10^{-15}$ Hz s$^{-1}$. We also discuss possible corrections to the spin down rate accounting for mass accretion onto the compact object when the system is X-ray active. Finally, combining the updated ephemerides with those of the previous outbursts, we find a long-term orbital evolution compatibl…

Angular momentumAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesLagrangian pointAstrophysicsCompact star01 natural sciencespulsars: individual: SAX J1808.4-3658Gravitationstars: neutronX-rays: binariesSettore FIS/05 - Astronomia E AstrofisicaPulsar0103 physical sciences010303 astronomy & astrophysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Physics010308 nuclear & particles physicsGravitational waveAstronomy and AstrophysicsOrbital periodaccretion accretion discs; stars: neutron; pulsars: individual: SAX J1808.4-3658; X-rays: binaries13. Climate actionSpace and Planetary ScienceQuadrupole:accretion accretion discAstrophysics::Earth and Planetary AstrophysicsAstrophysics - High Energy Astrophysical Phenomena
researchProduct

Evolutionary paths of binaries with a neutron star - I. The case of SAX J1808.4 - 3658

2018

The evolutionary status of the low mass X-ray binary SAX J1808.4-3658 is simulated by following the binary evolution of its possible progenitor system through mass transfer, starting at a period of $\sim$6.6 hr. The evolution includes angular momentum losses via magnetic braking and gravitational radiation. It also takes into account the effects of illumination of the donor by both the X-ray emission and the spin down luminosity of the pulsar. The system goes through stages of mass transfer and stages during which it is detached, where only the rotationally powered pulsar irradiates the donor. We show that the pulsar irradiation is a necessary ingredient to reach SAX J1808.4-3658 orbital pe…

Angular momentumastro-ph.SRAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesAstrophysics01 natural sciencesLuminosityPulsars: individual: SAX J1808.4Settore FIS/05 - Astronomia E AstrofisicaPulsarBinaries: closeMass transfer0103 physical sciencesBinaries: generalStars: low-maAstrophysics::Solar and Stellar Astrophysics010303 astronomy & astrophysicsSolar and Stellar Astrophysics (astro-ph.SR)3658 -X-rays: binarieHigh Energy Astrophysical Phenomena (astro-ph.HE)Physicsastro-ph.HE010308 nuclear & particles physicsGravitational waveAstronomy and AstrophysicsAstronomy and AstrophysicOrbital periodNeutron starAstrophysics - Solar and Stellar AstrophysicsSpace and Planetary ScienceAstrophysics - High Energy Astrophysical PhenomenaLow Mass
researchProduct

All-sky search for continuous gravitational waves from isolated neutron stars using Advanced LIGO O2 data

2019

We present results of an all-sky search for continuous gravitational waves (CWs), which can be produced by fast-spinning neutron stars with an asymmetry around their rotation axis, using data from the second observing run of the Advanced LIGO detectors. We employ three different semi-coherent methods ($\textit{FrequencyHough}$, $\textit{SkyHough}$, and $\textit{Time-Domain $\mathcal{F}$-statistic}$) to search in a gravitational-wave frequency band from 20 to 1922 Hz and a first frequency derivative from $-1\times10^{-8}$ to $2\times10^{-9}$ Hz/s. None of these searches has found clear evidence for a CW signal, so we present upper limits on the gravitational-wave strain amplitude $h_0$ (the …

AstronomyAstrophysicsRotation01 natural sciencesrotationGravitation Cosmology & AstrophysicsGeneral Relativity and Quantum CosmologyPhysics Particles & Fieldscontinuous gravitational waveLIGOneutron starGeneralLiterature_REFERENCE(e.g.dictionariesencyclopediasglossaries)media_commonHigh Energy Astrophysical Phenomena (astro-ph.HE)Settore FIS/01Physicsastro-ph.HEPhysicsPhysical SystemsAmplitudeGeneral relativitygravitational wavesPhysical Sciences[PHYS.GRQC]Physics [physics]/General Relativity and Quantum Cosmology [gr-qc]Gravitational wave detectionAstrophysics - High Energy Astrophysical Phenomenacontinuous gravitational waves; Advanced LIGOcontinuous gravitational wavesasymmetryGravitationNeutron stars & pulsarsGeneral relativityFrequency bandmedia_common.quotation_subjectgr-qcFOS: Physical sciencesalternative theories of gravityGeneral Relativity and Quantum Cosmology (gr-qc)Astronomy & AstrophysicsGravitational waves0103 physical sciencesAdvanced LIGOddc:530Gravitation Cosmology & Astrophysics010306 general physicsgravitational radiation: frequencySTFCgravitational wavesneutron starsGravitational wave sourcesScience & TechnologyGravitational wave sources Gravitational waves Physical Systems Neutron stars and pulsars Gravitational wave detection010308 nuclear & particles physicsGravitational waveRCUKGravitational Wave PhysicsLIGONeutron stars & pulsarsNeutron starSkyNeutron stars and pulsarsDewey Decimal Classification::500 | Naturwissenschaften::530 | Physik[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]
researchProduct

OBSERVATION OF THE TeV GAMMA-RAY SOURCE MGRO J1908+06 WITH ARGO-YBJ

2012

The extended gamma ray source MGRO J1908+06, discovered by the Milagro air shower detector in 2007, has been observed for about 4 years by the ARGO-YBJ experiment at TeV energies, with a statistical significance of 6.2 standard deviations. The peak of the signal is found at a position consistent with the pulsar PSR J1907+0602. Parametrizing the source shape with a two-dimensional Gauss function we estimate an extension \sigma = 0.49 \pm 0.22 degrees, consistent with a previous measurement by the Cherenkov Array H.E.S.S.. The observed energy spectrum is dN/dE = 6.1 \pm 1.4 \times 10^-13 (E/4 TeV)^{-2.54 \pm 0.36} photons cm^-2 s^-1 TeV^-1, in the energy range 1-20 TeV. The measured gamma ray…

Astrophysics::High Energy Astrophysical PhenomenaAstrophysicsgeneral – pulsars: individual (MGRO J1908+06) [gamma rays]7. Clean energy01 natural sciencesPulsar wind nebulaLuminositySettore FIS/05 - Astronomia E AstrofisicaPulsar0103 physical sciences010303 astronomy & astrophysicspulsarPhysics010308 nuclear & particles physicsgamma rays: general – pulsars: individual (MGRO J1908+06)Settore FIS/01 - Fisica SperimentaleGamma rayAstronomy and Astrophysics(MGRO J1908+06)Air showerCrab Nebula13. Climate actionSpace and Planetary Sciencegamma rayMilagroHigh Energy Physics::ExperimentAstrophysics - High Energy Astrophysical PhenomenaEnergy (signal processing)
researchProduct

The accretion flow to the intermittent accreting ms pulsar, HETE J1900.1-2455, as observed by XMM-Newton and RXTE

2012

We present a study of the accretion flow to the intermittent accreting millisecond pulsar, HETE J1900.1-2455, based on observations performed simultaneously by XMM-Newton and RXTE. The 0.33-50 keV spectrum is described by the sum of a hard Comptonized component originated in an optically thin {\tau}~1 corona, a soft kTin~0.2 keV component interpreted as accretion disc emission, and of disc reflection of the hard component. Two emission features are detected at energies of 0.98(1) and 6.58(7) keV, respectively. The latter is identified as K{\alpha} transition of Fe XXIII-XXV. A simultaneous detection in EPIC-pn, EPIC-MOS2, and RGS spectra favours an astrophysical origin also for the former, …

Astrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesAstrophysicsCompact star01 natural sciencesSpectral lineidentification line: profiles stars: neutron pulsars: individual: HETE J1900.1-2455 X-rays: binaries [line]GravitationSettore FIS/05 - Astronomia E AstrofisicaMillisecond pulsar0103 physical sciences010303 astronomy & astrophysicsAstrophysics::Galaxy AstrophysicsPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)010308 nuclear & particles physicsline: identification line: profiles stars: neutron pulsars: individual: HETE J1900.1-2455 X-rays: binariesAstronomyAstronomy and AstrophysicsRadiusAccretion (astrophysics)Neutron starAmplitudeSpace and Planetary ScienceAstrophysics::Earth and Planetary AstrophysicsAstrophysics - High Energy Astrophysical Phenomena
researchProduct