Search results for "Pyrolysi"
showing 10 items of 170 documents
Effects of pyrolysis temperature on the hydrologically relevant porosity of willow biochar
2018
Biochar pore space consists of porosity of multiple length scales. In direct water holding applications like water storage for plant water uptake, the main interest is in micrometre-range porosity since these pores are able to store water that is easily available for plants. Gas adsorption measurements which are commonly used to characterize the physical pore structure of biochars are not able to quantify this pore-size range. While pyrogenetic porosity (i.e. pores formed during pyrolysis process) tends to increase with elevated process temperature, it is uncertain whether this change affects the pore space capable to store plant available water. In this study, we characterized biochar poro…
Identification and Evaluation of Hazardous Pyrolysates in Bio-Based Rigid Polyurethane-Polyisocyanurate Foam Smoke
2021
In this study, rigid polyurethane (PU) and polyisocyanurate (PIR) foam samples made from renewable material (tall oil fatty acid) based polyols were analyzed by pyrolysis gas chromatography mass spectrometry (Py-GC/MS) to obtain information about the full relative smoke content, with a focus on substance identification by their functional groups and hazardousness. The relative content of gaseous products produced during the thermal degradation was evaluated between the two samples, differenced by their assigned isocyanate (NCO) index value—150 and 300. The main thermal degradation components of the rigid PU-PIR foam were found to originate from the decomposition of isocyanate, primarily for…
Evaluation of the optimal activation parameters for almond shell bio-char production for capacitive deionization
2020
Abstract A study on a possible new biomass waste to be used as electrode material for capacitive deionization (CDI) processes was performed. Raw almond shells were pyrolyzed at 800, 900 and 1000 °C and then activated through CO2. Carbon activation is used to develop porosity inside the material, increasing the specific surface area and the adsorption performances. In this work, authors tried to correlate the effects of pyrolysis and activation temperature on the ion storage capacity. Results from the desalination tests indicated that the best performance in terms of ion adsorption was obtained when the bio-char was activated at the temperature of 900 °C. Brunauer-Emmet-Teller (BET) and Barr…
Slow Pyrolysis come metodo per la valorizzazione di rifiuti e biomassa residuale
2022
Geogenic and atmospheric sources for volatile organic compounds in fumarolic emissions from Mt. Etna and Vulcano Island (Sicily, Italy)
2012
[1] In this paper, fluid source(s) and processes controlling the chemical composition of volatile organic compounds (VOCs) in gas discharges from Mt. Etna and Vulcano Island (Sicily, Italy) were investigated. The main composition of the Etnean and Volcano gas emissions is produced by mixing, to various degrees, of magmatic and hydrothermal components. VOCs are dominated by alkanes, alkenes and aromatics, with minor, though significant, concentrations of O-, S- and Cl(F)-substituted compounds. The main mechanism for the production of alkanes is likely related to pyrolysis of organic-matter-bearing sediments that interact with the ascending magmatic fluids. Alkanes are then converted to alken…
Mass spectrometric investigation of polymers: Thermal degradation of truxillic and truxinic polyamides
1975
The thermal degradation mechanism of four isomeric truxillic and truxinic polyamides were investigated by direct pyrolysis in the ion source of a mass spectrometer. Thermal degradation reactions were followed directly by this method by detecting the thermal and electron impact-induced fragments. The results obtained have shown that the thermal degradation products are sensibly different for the head-to-head (hh) and head-to-tail (ht) polymers and that the predominant pyrolytic process is the cyclobutane ring cleavage. In the hh isomers, both symmetrical and asymmetrical cyclobutane ring cleavage was detected, while in the ht isomers only symmetrical cleavage occurs; this explains the notice…
Study of the thermal decomposition of bromazepan complexes with Co(II), Ni(II), Cu(II) and Zn(II)
1984
Abstract The thermal behaviour of complexes of bromazepan with Co(II), Ni(II), Cu(II) and Zn(II) was studied by thermogravimetry (TG) and differential thermal analysis (DTA). The complexes decompose in two steps: dehydration and decomposition. A correlation between the dehydration temperatures of MB2Xn and the coordinating ability of X is observed.
Pyrolysis of humic acids from digested and composted sewage sludge
2000
Humic acids (HAs) were extracted from four digested sewage sludge samples composted for four months, one, two and four years. HAs were pyrolyzed at three different temperatures applying both conventional and in situ methylation (ISM) pyrolysis. The pyrolysates were analyzed using gas chromatography-mass spectrometry (GC/MS). Derivatization (ISM) and pyrolysis temperature had dramatic effects on the composition and relative amounts of the pyrolysates. Among the derivatized HA fragments aliphatic compounds prevailed under all the pyrolysis conditions tested. Aromatic substances consisting mainly of guaiacyl-type compounds were detected in higher abundances only at elevated temperatures. Witho…
Direct pyrolysis in the mass spectrometer of aromatic polysulfonates and polythiosulfonates
1978
The thermal degradation mechanism of three aromatic polysulfonates and polythiosulfonates was investigated by direct pyrolysis in the ion source of a mass spectrometer. Thermal degradation reactions were followed directly by this method by detecting the thermal and electron impact induced fragments. The results obtained have provided evidence that sulfur dioxide extrusion from the polymer backbone takes place in these polymers above 300°C. The synthesis and molecular characterization of the polymers studied are reported in the text.
Conversion of peat and coal nitrogen through HCN and NH3 to nitrogen oxides at 800 °C
1993
The conversion of fuel nitrogen through HCN and NH3 to nitrogen oxides (N2O, NO and NO2) was studied using an entrained-flow reactor at 800 °C with one coal and four peats at 5 and 1% O2. The ON ratios of the fuels were between 7 and 20. A clear dependence was found between the HCNNH3 ratio measured just after the vigorous pyrolysis step and the N2ONO ratio in the flue gas when these were plotted as a function of the initial ON ratio of the fuel.