Search results for "Pyrrolidinium"

showing 10 items of 10 documents

Thermophysical properties of binary mixtures of 1-butyl-1-methylpyrrolidinium trifluoromethanesulfonate ionic liquid with alcohols at several tempera…

2018

Abstract Densities, speeds of sound, and refractive indices for the binary systems made up by 1-butyl-1-methylpyrrolidinium trifluoromethanesulfonate and methanol, ethanol, 1-propanol, or 2-propanol, as well as for the pure components, have been measured covering the whole range of compositions at atmospheric pressure and T = (278.15–338.15) K. From densities and speeds of sound, isentropic compressibilities were calculated using the Newton-Laplace equation. Liquid ideal-mixture properties have been defined and calculated, and they have been used to determine excess molar volumes, excess isentropic compressibilities, and deviations in refractive indices. Excess and deviations in properties …

Isentropic processAtmospheric pressureBinary numberThermodynamics02 engineering and technology010402 general chemistry01 natural sciencesAtomic and Molecular Physics and Optics0104 chemical sciences1-butyl-1-methylpyrrolidiniumchemistry.chemical_compound020401 chemical engineeringchemistryIonic liquidGeneral Materials ScienceMethanol0204 chemical engineeringPhysical and Theoretical ChemistryRefractive indexTrifluoromethanesulfonateThe Journal of Chemical Thermodynamics
researchProduct

Multiple points of view of heteronuclear NOE: long range vs short range contacts in pyrrolidinium based ionic liquids in the presence of Li salts.

2015

The nuclear Overhauser enhancement (NOE) is a powerful tool of NMR spectroscopy extensively used to gain structural information in ionic liquids (ILs). A general model for the distance dependence of intermolecular NOE in ILs was recently proposed showing that NOE spots beyond the first solvation shell and accounts for long-range effects. This conclusion prompted for a deep rethinking of the NOE data interpretation in ILs. In this paper we present an extensive and quantitative study of N-propyl-N-methyl pyrrolidinium bis(trifluoromethanesulfonyl)imide (PYR13TFSI), the homologue with bis(fluorosulfonyl)imide (PYR13FSI), and their mixtures with LiTFSI based on 1H-19F and 1H-7LiNOE correlation …

Materials Chemistry2506 Metals and AlloysAtomic and Molecular Physics and OpticAnalytical chemistryCondensed Matter PhysicIonic liquidLithiumchemistry.chemical_compoundMaterials ChemistryPhysical and Theoretical ChemistryImideHeteronuclear NOESpectroscopyIntermolecular NOE;Fluorosulfonylimide;Ionic liquids;NMR;Trifluoromethanesulfonimide;Pyrrolidinium;Lithium;Heteronuclear NOELarmor precessionFluorosulfonylimideIntermolecular NOEElectronic Optical and Magnetic MaterialIntermolecular forceHeteronuclear NOE NMR Ionic liquids Pyrrolidinium Fluorosulfonylimide Trifluoromethanesulfonimide Lithium Intermolecular NOENuclear magnetic resonance spectroscopyCondensed Matter PhysicsAtomic and Molecular Physics and OpticsNMRElectronic Optical and Magnetic MaterialsIonic liquidsCrystallographyTrifluoromethanesulfonimideSolvation shellHeteronuclear moleculechemistryIonic liquidPolarPyrrolidinium
researchProduct

Lithium ion conducting PVdF-HFP composite gel electrolytes based on N-methoxyethyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl)-imide ionic li…

2010

Blends of PVDF-HFP and ionic liquids (ILs) are interesting for application as electrolytes in plastic Li batteries. They combine the advantages of the gel polymer electrolytes (GPEs) swollen by conventional organic liquid electrolytes with the nonflammability, and high thermal and electrochemical stability of ILs. In this work we prepare and characterize PVDF-HFP composite membranes swollen with a solution of LiTFSI in ether-functionalized pyrrolidinium-imide (PYRA12O1). The membranes are filled in with two different types of silica: i) mesoporous SiO2 (SBA-15) and a commercial nano-size one (HiSilTM T700). The ionic conductivity and the electrochemical properties of the gel electrolytes ar…

Materials sciencePVdFEnergy Engineering and Power TechnologyIonic bondingchemistry.chemical_elementElectrolyteIonic liquidchemistry.chemical_compoundIonic conductivityThermal stabilityElectrical and Electronic EngineeringPhysical and Theoretical ChemistryGel polymer electrolyteSettore CHIM/02 - Chimica FisicaChromatographyRenewable Energy Sustainability and the EnvironmentPVdF; Ionic liquids; Pyrrolidinium; Gel polymer electrolytes; Lithium battery; Nanoscale fillersLithium batteryLithium batteryMembraneSettore ING-IND/22 - Scienza E Tecnologia Dei MaterialiChemical engineeringchemistryIonic liquidLithiumNanoscale fillerNanoscale fillersPyrrolidinium
researchProduct

CCDC 1040201: Experimental Crystal Structure Determination

2016

Related Article: Markus Albrecht, Yi Hai, Okan Köksal, Gerhard Raabe, Fangfang Pan, Arto Valkonen and Kari Rissanen|2016|Chem.-Eur.J.|22|6596|doi:10.1002/chem.201600249

Space GroupCrystallography1-(35-bis(trifluoromethyl)benzyl)-2-carboxypyrrolidinium chlorideCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 801068: Experimental Crystal Structure Determination

2011

Related Article: R.Francke, D.Cericola, R.Kotz, G.Schnakenburg, S.R.Waldvogel|2011|Chem.-Eur.J.|17|3082|doi:10.1002/chem.201003449

Space GroupCrystallographyCrystal SystemCrystal Structure1-Butyl-1-methylpyrrolidinium bis(33'-difluoro-55'-dimethylbiphenyl-22'-diolato)borateCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1825462: Experimental Crystal Structure Determination

2018

Related Article: Quentin Bonnin, Sook-Yen Wong, Cedric Balan, Virginie Comte, Raluca Malacea, Marie-Jose Penouilh, Philippe Richard, Gerald Kehr, Adrien T. Normand, Gerhard Erker, Pierre Le Gendre|2018|Eur.J.Inorg.Chem.|2018|3813|doi:10.1002/ejic.201800636

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parametersdichloro-cyclopentadienyl-((pyrrolidinium-1-ylmethyl)-cyclopentadienyl)-titanium chloride chloroform solvateExperimental 3D Coordinates
researchProduct

CCDC 244752: Experimental Crystal Structure Determination

2005

Related Article: N.Meyer, F.Werner, T.Opatz|2005|Synthesis|2005|945|doi:10.1055/s-2005-861838

Space GroupCrystallographyCrystal SystemCrystal Structurecis-1-Benzhydryl-23-diphenylpyrrolidinium picrateCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 246773: Experimental Crystal Structure Determination

2005

Related Article: R.Jakubas, B.Bednarska-Bolek, J.Zaleski, W.Medycki, K.Holderna-Natkaniec, P.Zielinski, M.Galazka|2005|Solid State Sciences|7|381|doi:10.1016/j.solidstatesciences.2005.01.010

Space GroupCrystallographyPyrrolidinium hexachloro-antimonate(v)Crystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 246772: Experimental Crystal Structure Determination

2005

Related Article: R.Jakubas, B.Bednarska-Bolek, J.Zaleski, W.Medycki, K.Holderna-Natkaniec, P.Zielinski, M.Galazka|2005|Solid State Sciences|7|381|doi:10.1016/j.solidstatesciences.2005.01.010

Space GroupCrystallographyPyrrolidinium hexachloro-antimonate(v)Crystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1485963: Experimental Crystal Structure Determination

2017

Related Article: Nejib Dwadnia, Julien Roger, Nadine Pirio, Hélène Cattey, Ridha Ben Salem, Jean-Cyrille Hierso|2017|Chem.Asian J.|12|459|doi:10.1002/asia.201601583

Space GroupCrystallographybis(mu-(3-t-butyl-5-(pyrrolidiniumylmethyl)-cyclopentadienyl)(diphenyl)phosphine)-di-chloro-di-gold-iron hemikis((mu-oxo)-hexachloro-di-gallium) sesquikis(tetrachloro-gallium) dichloromethane solvateCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct