Search results for "QC770"
showing 10 items of 270 documents
A QCD analysis of LHCb D-meson data in p plus Pb collisions
2020
We scrutinize the recent LHCb data for D$^0$-meson production in p+Pb collisions within a next-to-leading order QCD framework. Our calculations are performed in the SACOT-$m_{\rm T}$ variant of the general-mass variable-flavour-number scheme (GM-VFNS), which has previously been shown to provide a realistic description of the LHC p+p data. Using the EPPS16 and nCTEQ15 nuclear parton distribution functions (PDFs) we show that a very good agreement is obtained also in the p+Pb case both for cross sections and nuclear modification ratios in the wide rapidity range covered by the LHCb data. Encouraged by the good correspondence, we quantify the impact of these data on the nuclear PDFs by the Hes…
Hidden-charm and bottom tetra- and pentaquarks with strangeness in the hadro-quarkonium and compact tetraquark models
2020
In two recent papers, we used the hadro-quarkonium model to study the properties of hidden-charm and bottom tetraquarks and pentaquarks. Here, we extend the previous results and calculate the masses of heavy-quarkonium-kaon/hyperon systems. We also compute the spectrum of hidden-charm and bottom tetraquarks with strangeness in the compact tetraquark (diquark-antidiquark) model. If heavy-light exotic systems with non-null strangeness content were to be observed experimentally, it might be possible to distinguish among the large variety of available theoretical pictures for tetra- and pentaquark states and, possibly, rule out those which are not compatible with the data. peerReviewed
Revisiting the D-meson hadroproduction in general-mass variable flavour number scheme
2018
We introduce a novel realization of the open heavy-flavour hadroproduction in general-mass variable flavour number scheme at next-to-leading order in perturbative QCD. The principal novelty with respect to the earlier works is in the treatment of small-transverse-momentum limit, which has been a particularly challenging kinematic region in the past. We show that by a suitable choice of scheme, it is possible to obtain a well-behaved description of the open heavy-flavour hadroproduction cross sections from zero up to asymptotically high transverse momentum. We contrast our calculation with the available D$^0$-meson data as measured by the LHCb and ALICE collaborations at the LHC, finding a v…
Fingerprints of heavy scales in electroweak effective Lagrangians
2017
The couplings of the electroweak effective theory contain information on the heavy-mass scales which are no-longer present in the low-energy Lagrangian. We build a general effective Lagrangian, implementing the electroweak chiral symmetry breaking $SU(2)_L\otimes SU(2)_R\to SU(2)_{L+R}$, which couples the known particle fields to heavier states with bosonic quantum numbers $J^P=0^\pm$ and $1^\pm$. We consider colour-singlet heavy fields that are in singlet or triplet representations of the electroweak group. Integrating out these heavy scales, we analyze the pattern of low-energy couplings among the light fields which are generated by the massive states. We adopt a generic non-linear realiz…
A model of neutrino mass and dark matter with large neutrinoless double beta decay
2017
We propose a model where neutrino masses are generated at three loop order but neutrinoless double beta decay occurs at one loop. Thus we can have large neutrinoless double beta decay observable in the future experiments even when the neutrino masses are very small. The model receives strong constraints from the neutrino data and lepton flavor violating decays, which substantially reduces the number of free parameters. Our model also opens up the possibility of having several new scalars below the TeV regime, which can be explored at the collider experiments. Additionally, our model also has an unbroken $Z_2$ symmetry which allows us to identify a viable Dark Matter candidate.
Heavy Higgs of the Twin Higgs models
2018
Twin Higgs models are the prime illustration of neutral naturalness, where the new particles of the twin sector, gauge singlets of the Standard Model (SM), ameliorate the little hierarchy problem. In this work, we analyse phenomenological implications of the heavy Higgs of the Mirror Twin Higgs and Fraternal Twin Higgs models, when electroweak symmetry breaking is linearly realized. The most general structure of twin Higgs symmetry breaking, including explicit soft and hard breaking terms in the scalar potential, is employed. The direct and indirect searches at the LHC are used to probe the parameter space of Twin Higgs models through mixing of the heavy Higgs with the SM Higgs and decays o…
Flavour alignment in multi-Higgs-doublet models
2017
Extended electroweak scalar sectors containing several doublet multiplets require flavour-aligned Yukawa matrices to prevent the appearance at tree level of unwanted flavour- changing neutral-current transitions. We analyse the misalignment induced by one-loop quantum corrections and explore possible generalizations of the alignment condition and their compatibility with current experimental constraints. The hypothesis of flavour alignment at a high scale turns out to be consistent with all known phenomenological tests.
A tale of two portals: testing light, hidden new physics at future e + e − colliders
2017
We investigate the prospects for producing new, light, hidden states at a future $e^+ e^-$ collider in a Higgsed dark $U(1)_D$ model, which we call the Double Dark Portal model. The simultaneous presence of both vector and scalar portal couplings immediately modifies the Standard Model Higgsstrahlung channel, $e^+ e^- \to Zh$, at leading order in each coupling. In addition, each portal leads to complementary signals which can be probed at direct and indirect detection dark matter experiments. After accounting for current constraints from LEP and LHC, we demonstrate that a future $e^+ e^-$ Higgs factory will have unique and leading sensitivity to the two portal couplings by studying a host o…
Adding pseudo-observables to the four-lepton experimentalist’s toolbox
2018
The "golden" channel, in which the newly-discovered Higgs boson decays to four leptons by means of intermediate vector bosons, is important for determining the properties of the Higgs boson and for searching for subtle new physics effects. Different approaches exist for parametrizing the relevant Higgs couplings in this channel; here we relate the use of pseudo-observables to methods based on specifying the most general amplitude or Lagrangian terms for the $HVV$ interactions. We also provide projections for sensitivity in this channel in several novel scenarios, illustrating the use of pseudo-observables, and analyze the role of kinematic distributions and (ratios of) rates in such $H\to4\…
Enhancement of the double Higgs production via leptoquarks at the LHC
2021
Measurements of single Higgs production and its decays are in good agreement with the Standard Model. There is still room for large modifications in double Higgs production at LHC, though these effects may be correlated with large corrections to other observables, in particular single Higgs production. In this work we address the issue of enhancing double Higgs production in the presence of scalar leptoquarks while satisfying all experimental constraints. We show at leading order that including more than one species of leptoquarks, large cubic interactions with the Higgs can lead to sizable enhancement of di-Higgs production cross section at LHC, while at the same time keeping other Higgs o…