Search results for "QC770"
showing 10 items of 270 documents
Deep inelastic scattering on the quark-gluon plasma
2020
We provide an interpretation of the structure functions of a thermal medium such as the quark-gluon plasma in terms of the scattering of an incoming electron on the medium via the exchange of a spacelike photon. We then focus on the deep-inelastic scattering (DIS) regime, and formulate the corresponding moment sum rules obeyed by the structure functions. Accordingly, these moments are given by the thermal expectation value of twist-two operators, which is computable from first principles in lattice QCD for the first few moments. We also show how lattice QCD calculations can be used to probe how large the photon virtuality needs to be in order for the Bjorken scaling of structure functions t…
Double parton distributions in the pion in the Nambu–Jona-Lasinio model
2019
Two-parton correlations in the pion, a non perturbative information encoded in double parton distribution functions, are investigated in the Nambu and Jona-Lasinio model. It is found that double parton distribution functions expose novel dynamical information on the structure of the pion, not accessible through one-body parton distributions, as it happens in several estimates for the proton target and in a previous evaluation for the pion, in a light-cone framework. Expressions and predictions are given for double parton distributions corresponding to leading-twist Dirac operators in the quark vertices, and to different regularization methods for the Nambu and Jona-Lasinio model. These resu…
Improved global fit to Non-Standard neutrino Interactions using COHERENT energy and timing data
2020
We perform a global fit to neutrino oscillation and coherent neutrino-nucleus scattering data, using both timing and energy information from the COHERENT experiment. The results are used to set model-independent bounds on four-fermion effective operators inducing non-standard neutral-current neutrino interactions. We quantify the allowed ranges for their Wilson coefficients, as well as the status of the LMA-D solution, for a wide class of new physics models with arbitrary ratios between the strength of the operators involving up and down quarks. Our results are presented for the COHERENT experiment alone, as well as in combination with the global data from oscillation experiments. We also q…
Leptoquark toolbox for precision collider studies
2018
We implement scalar and vector leptoquark (LQ) models in the universal FeynRules output (UFO) format assuming the Standard Model fermion content and conservation of baryon and lepton numbers. Scalar LQ implementations include next-to-leading order (NLO) QCD corrections. We report the NLO QCD inclusive cross sections in proton-proton collisions at 13 TeV, 14 TeV, and 27 TeV for all on-shell LQ production processes. These comprise (i) LQ pair production ($p p \to \Phi \Phi$) and (ii) single LQ + lepton production ($p p \to \Phi \ell$) for all initial quark flavours ($u$, $d$, $s$, $c$, and $b$). Vector LQ implementation includes adjustable non-minimal QCD coupling. We discuss several aspects …
A$_{FB}$ in the SMEFT: precision Z physics at the LHC
2021
We study the forward-backward asymmetry $A_{FB}$ in $pp \to \ell^+\ell^-$ at the Z peak within the Standard Model Effective Field Theory (SMEFT). We find that this observable provides per mille level constraints on the vertex corrections of the Z boson to quarks,which close a flat direction in the electroweak precision SMEFT fit. Moreover, we show that current $A_{FB}$ data is precise enough so that its inclusion in the fit improves significantly LEP bounds even in simple New Physics setups. This demonstrates that the LHC can compete with and complement LEP when it comes to precision measurements of the Z boson properties
Light- and strange-quark mass dependence of the ρ(770) meson revisited
2020
Recent lattice data on $\pi\pi$-scattering phase shifts in the vector-isovector channel, pseudoscalar meson masses and decay constants for strange-quark masses smaller or equal to the physical value allow us to study the strangeness dependence of these observables for the first time. We perform a global analysis on two kind of lattice trajectories depending on whether the sum of quark masses or the strange-quark mass is kept fixed to the physical point. The quark mass dependence of these observables is extracted from unitarized coupled-channel one-loop Chiral Perturbation Theory. This analysis guides new predictions on the $\rho(770)$ meson properties over trajectories where the strange-qua…
Spectrum of fully-heavy tetraquarks from a diquark+antidiquark perspective
2019
Using a relativized diquark model Hamiltonian, we calculate the masses of $J^{PC}=0^{++}$ ground-state tetraquarks in the following systems: $b s \bar b \bar s$, $bb \bar n \bar n$ ($n=u, d$), $bb \bar s \bar s$, $cc\bar c \bar c$, $b b \bar b \bar b$, $b c\bar b \bar c$ and $b b \bar c \bar c$. We also compute extensive spectra for the fully-heavy quark flavour combinations. Finally, as a test of the diquark model approach, we compute the masses of fully-heavy baryons in the diquark model. Our results may be compared soon to the forthcoming experimental data for fully-heavy three-quark systems.
Vacuum Induced CP Violation Generating a Complex CKM Matrix with Controlled Scalar FCNC
2018
We propose a viable minimal model with spontaneous CP violation in the framework of a two Higgs doublet model. The model is based on a generalised Branco–Grimus–Lavoura model with a flavoured Z2 symmetry, under which two of the quark families are even and the third one is odd. The lagrangian respects CP invariance, but the vacuum has a CP violating phase, which is able to generate a complex CKM matrix, with the rephasing invariant strength of CP violation compatible with experiment. The question of scalar mediated flavour changing neutral couplings is carefully studied. In particular we point out a deep connection between the generation of a complex CKM matrix from a vacuum phase and the ap…
First global next-to-leading order determination of diffractive parton distribution functions and their uncertainties within the {\tt xFitter} framew…
2018
We present {\tt GKG18-DPDFs}, a next-to-leading order (NLO) QCD analysis of diffractive parton distribution functions (diffractive PDFs) and their uncertainties. This is the first global set of diffractive PDFs determined within the {\tt xFitter} framework. This analysis is motivated by all available and most up-to-date data on inclusive diffractive deep inelastic scattering (diffractive DIS). Heavy quark contributions are considered within the framework of the Thorne-Roberts (TR) general mass variable flavor number scheme (GM-VFNS). We form a mutually consistent set of diffractive PDFs due to the inclusion of high-precision data from H1/ZEUS combined inclusive diffractive cross sections me…
Search for pentaquarks states in Z decays
2004
Exotic hadrons made of five quarks (pentaquarks) are searched for in hadronic Z decays collected by the ALEPH detector at LEP. No significant signal is observed. At 95% C.L. upper limits are set on the production rates N of such particles and their charge-conjugate state per Z decay: N Θ(1535)+·BR(Θ(1535)+→pK S0)<6.2×10-4, N Ε(1862)-·BR(Ε(1862)-→Ε -π-)<4.5×10-4, N Ε(1862)0·BR(Ε(1862)0→Ε -π+)<8.9×10-4, N Θc(3100)0·BR(Θc(3100) 0→D*-p)<6.3×10-4, N Θc(3100)0·BR(Θc(3100) 0→D-p)<31×10-4. © 2004 Elsevier B.V. All rights reserved.