Search results for "QC770"

showing 10 items of 270 documents

Deep inelastic scattering on the quark-gluon plasma

2020

We provide an interpretation of the structure functions of a thermal medium such as the quark-gluon plasma in terms of the scattering of an incoming electron on the medium via the exchange of a spacelike photon. We then focus on the deep-inelastic scattering (DIS) regime, and formulate the corresponding moment sum rules obeyed by the structure functions. Accordingly, these moments are given by the thermal expectation value of twist-two operators, which is computable from first principles in lattice QCD for the first few moments. We also show how lattice QCD calculations can be used to probe how large the photon virtuality needs to be in order for the Bjorken scaling of structure functions t…

QuarkNuclear and High Energy PhysicsParticle physicsFOS: Physical scienceshep-latPartonLattice QCDExpectation value01 natural sciencesHigh Energy Physics - LatticeHigh Energy Physics - Phenomenology (hep-ph)0103 physical sciencesPerturbative QCDlcsh:Nuclear and particle physics. Atomic energy. Radioactivity010306 general physicsParticle Physics - PhenomenologyPhysics010308 nuclear & particles physicsHigh Energy Physics - Lattice (hep-lat)High Energy Physics::PhenomenologyPerturbative QCDParticle Physics - Latticehep-phLattice QCDRest frameDeep inelastic scatteringHigh Energy Physics - PhenomenologyQuark–gluon plasmaQuark-Gluon Plasmalcsh:QC770-798High Energy Physics::Experiment
researchProduct

Double parton distributions in the pion in the Nambu–Jona-Lasinio model

2019

Two-parton correlations in the pion, a non perturbative information encoded in double parton distribution functions, are investigated in the Nambu and Jona-Lasinio model. It is found that double parton distribution functions expose novel dynamical information on the structure of the pion, not accessible through one-body parton distributions, as it happens in several estimates for the proton target and in a previous evaluation for the pion, in a light-cone framework. Expressions and predictions are given for double parton distributions corresponding to leading-twist Dirac operators in the quark vertices, and to different regularization methods for the Nambu and Jona-Lasinio model. These resu…

QuarkNuclear and High Energy PhysicsParticle physicsHigh Energy Physics::LatticeNuclear TheoryFOS: Physical sciencesParton01 natural sciencesPionHigh Energy Physics - Phenomenology (hep-ph)Nambu–Jona-Lasinio modelLattice (order)0103 physical scienceslcsh:Nuclear and particle physics. Atomic energy. Radioactivity010306 general physicsNuclear ExperimentPhenomenological ModelsDeep Inelastic Scattering (Phenomenology)Physics010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyHigh Energy Physics - PhenomenologyDistribution functionDeep Inelastic Scattering (Phenomenology); Phenomenological ModelsRegularization (physics)lcsh:QC770-798High Energy Physics::ExperimentNon-perturbativeJournal of High Energy Physics
researchProduct

Improved global fit to Non-Standard neutrino Interactions using COHERENT energy and timing data

2020

We perform a global fit to neutrino oscillation and coherent neutrino-nucleus scattering data, using both timing and energy information from the COHERENT experiment. The results are used to set model-independent bounds on four-fermion effective operators inducing non-standard neutral-current neutrino interactions. We quantify the allowed ranges for their Wilson coefficients, as well as the status of the LMA-D solution, for a wide class of new physics models with arbitrary ratios between the strength of the operators involving up and down quarks. Our results are presented for the COHERENT experiment alone, as well as in combination with the global data from oscillation experiments. We also q…

QuarkNuclear and High Energy PhysicsParticle physicsPhysics beyond the Standard ModelFOS: Physical sciences7. Clean energy01 natural sciencesHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)High Energy Physics - Phenomenology (hep-ph)0103 physical scienceslcsh:Nuclear and particle physics. Atomic energy. RadioactivityNeutrino Physics010306 general physicsNeutrino oscillationPhysics010308 nuclear & particles physicsScatteringOscillationForm factor (quantum field theory)High Energy Physics - PhenomenologyBeyond Standard Modellcsh:QC770-798Solar and Atmospheric NeutrinosNeutrinoEnergy (signal processing)
researchProduct

Leptoquark toolbox for precision collider studies

2018

We implement scalar and vector leptoquark (LQ) models in the universal FeynRules output (UFO) format assuming the Standard Model fermion content and conservation of baryon and lepton numbers. Scalar LQ implementations include next-to-leading order (NLO) QCD corrections. We report the NLO QCD inclusive cross sections in proton-proton collisions at 13 TeV, 14 TeV, and 27 TeV for all on-shell LQ production processes. These comprise (i) LQ pair production ($p p \to \Phi \Phi$) and (ii) single LQ + lepton production ($p p \to \Phi \ell$) for all initial quark flavours ($u$, $d$, $s$, $c$, and $b$). Vector LQ implementation includes adjustable non-minimal QCD coupling. We discuss several aspects …

QuarkNuclear and High Energy PhysicsParticle physicsPhysics beyond the Standard ModelHigh Energy Physics::LatticeScalar (mathematics)FOS: Physical sciences01 natural sciencesHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)High Energy Physics - Phenomenology (hep-ph)Beyond Standard Model Heavy Quark Physics0103 physical sciencesHeavy Quark Physicslcsh:Nuclear and particle physics. Atomic energy. RadioactivityLeptoquarkNuclear Experiment010306 general physicsQuantum chromodynamicsPhysicsLarge Hadron Collider010308 nuclear & particles physicsElectroweak interactionHigh Energy Physics::PhenomenologyHigh Energy Physics - PhenomenologyPair productionBeyond Standard Modellcsh:QC770-798High Energy Physics::Experiment
researchProduct

A$_{FB}$ in the SMEFT: precision Z physics at the LHC

2021

We study the forward-backward asymmetry $A_{FB}$ in $pp \to \ell^+\ell^-$ at the Z peak within the Standard Model Effective Field Theory (SMEFT). We find that this observable provides per mille level constraints on the vertex corrections of the Z boson to quarks,which close a flat direction in the electroweak precision SMEFT fit. Moreover, we show that current $A_{FB}$ data is precise enough so that its inclusion in the fit improves significantly LEP bounds even in simple New Physics setups. This demonstrates that the LHC can compete with and complement LEP when it comes to precision measurements of the Z boson properties

QuarkNuclear and High Energy PhysicsParticle physicsp p: scatteringangular distribution: asymmetryPhysics beyond the Standard Modelmedia_common.quotation_subjectFOS: Physical sciencesQC770-79801 natural sciencesAsymmetryStandard ModelquarkZ0: productionHigh Energy Physics - Phenomenology (hep-ph)effective field theoryflat directionNuclear and particle physics. Atomic energy. Radioactivity0103 physical sciencesEffective field theory010306 general physicsmedia_commonPhysicsLarge Hadron Colliderelectroweak interaction010308 nuclear & particles physicsprecision measurementnew physicsElectroweak interactionHigh Energy Physics::PhenomenologyObservableCERN LEP StorEffective Field Theoriescorrection: vertexHigh Energy Physics - Phenomenologyp p --> lepton+ lepton-CERN LHC Coll[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph]Beyond Standard ModelHigh Energy Physics::Experiment
researchProduct

Light- and strange-quark mass dependence of the ρ(770) meson revisited

2020

Recent lattice data on $\pi\pi$-scattering phase shifts in the vector-isovector channel, pseudoscalar meson masses and decay constants for strange-quark masses smaller or equal to the physical value allow us to study the strangeness dependence of these observables for the first time. We perform a global analysis on two kind of lattice trajectories depending on whether the sum of quark masses or the strange-quark mass is kept fixed to the physical point. The quark mass dependence of these observables is extracted from unitarized coupled-channel one-loop Chiral Perturbation Theory. This analysis guides new predictions on the $\rho(770)$ meson properties over trajectories where the strange-qua…

QuarkNuclear and High Energy PhysicsStrange quarkParticle physicsChiral perturbation theoryMeson530 PhysicsHigh Energy Physics::LatticeNuclear TheoryLattice QCDStrangeness01 natural sciencesPseudoscalar mesonHigh Energy Physics - Lattice0103 physical scienceslcsh:Nuclear and particle physics. Atomic energy. RadioactivityNuclear Experiment010306 general physicsPhysicsTeoría de los quanta010308 nuclear & particles physicsComputer Science::Information RetrievalHigh Energy Physics::PhenomenologyObservableLattice QCDHigh Energy Physics - PhenomenologyChiral LagrangiansPartículaslcsh:QC770-798High Energy Physics::ExperimentJournal of High Energy Physics
researchProduct

Spectrum of fully-heavy tetraquarks from a diquark+antidiquark perspective

2019

Using a relativized diquark model Hamiltonian, we calculate the masses of $J^{PC}=0^{++}$ ground-state tetraquarks in the following systems: $b s \bar b \bar s$, $bb \bar n \bar n$ ($n=u, d$), $bb \bar s \bar s$, $cc\bar c \bar c$, $b b \bar b \bar b$, $b c\bar b \bar c$ and $b b \bar c \bar c$. We also compute extensive spectra for the fully-heavy quark flavour combinations. Finally, as a test of the diquark model approach, we compute the masses of fully-heavy baryons in the diquark model. Our results may be compared soon to the forthcoming experimental data for fully-heavy three-quark systems.

QuarkParticle physicsPhysics and Astronomy (miscellaneous)Nuclear TheoryHigh Energy Physics::LatticeNuclear TheoryFOS: Physical scienceslcsh:AstrophysicshiukkasfysiikkaHigh Energy Physics - ExperimentNuclear Theory (nucl-th)symbols.namesakeHigh Energy Physics - Experiment (hep-ex)High Energy Physics - LatticeHigh Energy Physics - Phenomenology (hep-ph)lcsh:QB460-466lcsh:Nuclear and particle physics. Atomic energy. RadioactivityNuclear Experiment (nucl-ex)Engineering (miscellaneous)Nuclear theoryNuclear ExperimentPhysicstheoretical physicskvarkitHigh Energy Physics::PhenomenologyHigh Energy Physics - Lattice (hep-lat)DiquarkBaryonHigh Energy Physics - Phenomenologysymbolslcsh:QC770-798High Energy Physics::ExperimentHamiltonian (quantum mechanics)European Physical Journal
researchProduct

Vacuum Induced CP Violation Generating a Complex CKM Matrix with Controlled Scalar FCNC

2018

We propose a viable minimal model with spontaneous CP violation in the framework of a two Higgs doublet model. The model is based on a generalised Branco–Grimus–Lavoura model with a flavoured Z2 symmetry, under which two of the quark families are even and the third one is odd. The lagrangian respects CP invariance, but the vacuum has a CP violating phase, which is able to generate a complex CKM matrix, with the rephasing invariant strength of CP violation compatible with experiment. The question of scalar mediated flavour changing neutral couplings is carefully studied. In particular we point out a deep connection between the generation of a complex CKM matrix from a vacuum phase and the ap…

QuarkParticle physicsPhysics and Astronomy (miscellaneous)Physics beyond the Standard ModelScalar (mathematics)FOS: Physical scienceslcsh:Astrophysics01 natural sciencesComputer Science::Digital LibrariesHigh Energy Physics - ExperimentMinimal modelTwo-Higgs-doublet modelHigh Energy Physics - Experiment (hep-ex)High Energy Physics - Phenomenology (hep-ph)0103 physical scienceslcsh:QB460-466lcsh:Nuclear and particle physics. Atomic energy. Radioactivity010306 general physicsEngineering (miscellaneous)Physics010308 nuclear & particles physicsCabibbo–Kobayashi–Maskawa matrixHigh Energy Physics::PhenomenologyHigh Energy Physics - PhenomenologyHiggs bosonCP violationlcsh:QC770-798High Energy Physics::Experiment
researchProduct

First global next-to-leading order determination of diffractive parton distribution functions and their uncertainties within the {\tt xFitter} framew…

2018

We present {\tt GKG18-DPDFs}, a next-to-leading order (NLO) QCD analysis of diffractive parton distribution functions (diffractive PDFs) and their uncertainties. This is the first global set of diffractive PDFs determined within the {\tt xFitter} framework. This analysis is motivated by all available and most up-to-date data on inclusive diffractive deep inelastic scattering (diffractive DIS). Heavy quark contributions are considered within the framework of the Thorne-Roberts (TR) general mass variable flavor number scheme (GM-VFNS). We form a mutually consistent set of diffractive PDFs due to the inclusion of high-precision data from H1/ZEUS combined inclusive diffractive cross sections me…

QuarkParticle physicsPhysics and Astronomy (miscellaneous)parton distribution functionsHERAPREDICTIONSFOS: Physical scienceslcsh:AstrophysicsPartonhiukkasfysiikkaPROTON114 Physical sciences01 natural sciencesZeus (malware)CROSS-SECTIONSHigh Energy Physics - ExperimentDEEP-INELASTIC SCATTERINGHigh Energy Physics - Experiment (hep-ex)High Energy Physics - Phenomenology (hep-ph)deep inelastic scatteringlcsh:QB460-4660103 physical sciencesquantum chromodynamicslcsh:Nuclear and particle physics. Atomic energy. RadioactivityQCD ANALYSIS010306 general physicsEngineering (miscellaneous)PhysicsQuantum chromodynamicsLarge Hadron Collider010308 nuclear & particles physicsHERADeep inelastic scatteringHigh Energy Physics - PhenomenologyDistribution functionTESTSPHOTOPRODUCTIONlcsh:QC770-798LHC
researchProduct

Search for pentaquarks states in Z decays

2004

Exotic hadrons made of five quarks (pentaquarks) are searched for in hadronic Z decays collected by the ALEPH detector at LEP. No significant signal is observed. At 95% C.L. upper limits are set on the production rates N of such particles and their charge-conjugate state per Z decay: N Θ(1535)+·BR(Θ(1535)+→pK S0)<6.2×10-4, N Ε(1862)-·BR(Ε(1862)-→Ε -π-)<4.5×10-4, N Ε(1862)0·BR(Ε(1862)0→Ε -π+)<8.9×10-4, N Θc(3100)0·BR(Θc(3100) 0→D*-p)<6.3×10-4, N Θc(3100)0·BR(Θc(3100) 0→D-p)<31×10-4. © 2004 Elsevier B.V. All rights reserved.

QuarkPhysics1221Particle physicsAlephNuclear and High Energy Physics010308 nuclear & particles physicsHigh Energy Physics::LatticeHadronNuclear TheoryHigh Energy Physics::PhenomenologyExotic hadronState (functional analysis)01 natural sciencesPentaquarkNuclear physicsbaryons mass soliton model0103 physical sciencesQC770[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Physique des particules élémentairesProduction (computer science)High Energy Physics::Experiment010306 general physicsNuclear Experiment
researchProduct