Search results for "QC770"

showing 10 items of 270 documents

Multicenter solutions in Eddington-inspired Born-Infeld gravity

2020

We find multicenter (Majumdar-Papapetrou type) solutions of Eddington-inspired Born-Infeld gravity coupled to electromagnetic fields governed by a Born-Infeld-like Lagrangian. We construct the general solution for an arbitrary number of centers in equilibrium and then discuss the properties of their one-particle configurations, including the existence of bounces and the regularity (geodesic completeness) of these spacetimes. Our method can be used to construct multicenter solutions in other theories of gravity.

Electromagnetic fieldHigh Energy Physics - TheoryGravity (chemistry)Física-Modelos matemáticosPhysics and Astronomy (miscellaneous)GeodesicFOS: Physical scienceslcsh:AstrophysicsGeneral Relativity and Quantum Cosmology (gr-qc)Type (model theory)01 natural sciencesGeneral Relativity and Quantum Cosmologysymbols.namesakeGeneral Relativity and Quantum CosmologyCompleteness (order theory)0103 physical scienceslcsh:QB460-466Física matemáticalcsh:Nuclear and particle physics. Atomic energy. Radioactivity010306 general physicsEngineering (miscellaneous)Mathematical physicsPhysics010308 nuclear & particles physicsHigh Energy Physics - Theory (hep-th)symbolslcsh:QC770-798Lagrangian
researchProduct

First operation of the superconducting Darmstadt linear electron accelerator as an energy recovery linac

2020

The superconducting Darmstadt linear electron accelerator (S-DALINAC) has been operated as an energy recovery linac (ERL) for the first time. The S-DALINAC is a recirculating superconducting radio-frequency (SRF) accelerator and had been upgraded with an additional recirculation beamline. It features a path length adjustment system that provides a freedom of choice of 360\ifmmode^\circ\else\textdegree\fi{} for the rf phase difference between the electron bunches recirculated through the new beamline and the phase of the accelerating ${\mathrm{TM}}_{010}$ mode of the oscillating electromagnetic field in the SRF cavities of the accelerator. A choice of around 180\ifmmode^\circ\else\textdegree…

Electromagnetic fieldSuperconductivityPhysicsNuclear and High Energy PhysicsPhysics and Astronomy (miscellaneous)Phase (waves)Particle acceleratorSurfaces and InterfacesKinetic energylaw.inventionNuclear physicsBeamlinelawlcsh:QC770-798Physics::Accelerator Physicslcsh:Nuclear and particle physics. Atomic energy. RadioactivityEnergy (signal processing)Beam (structure)Physical Review Accelerators and Beams
researchProduct

Observation of e + e − → ηψ(2S) at center-of-mass energies from 4.236 to 4.600 GeV

2021

Journal of high energy physics 2021(10), 177 (2021). doi:10.1007/JHEP10(2021)177

ExoticsNuclear and High Energy Physicsmeasured [channel cross section]e+-e− ExperimentsQuarkoniumannihilation [electron positron]QC770-798electron positron: annihilationetaParticle and resonance productionMeasure (mathematics)530Standard deviationNONuclear physicsSubatomär fysikCross section (physics)e+-e��� Experimentsenergy dependence: measured [cross section]Astronomi astrofysik och kosmologiNuclear and particle physics. Atomic energy. RadioactivitySubatomic PhysicsAstronomy Astrophysics and Cosmologyddc:530e+-e− Experiments Exotics Particle and resonance production Quarkoniumpsi(3685)PhysicsBESe(+)-e(-) ExperimentsDetectorstatistical [error]electron positron --> eta psi(3685)e +-e − Experimentselectron positron: colliding beamsBeijing Stor4.236-4.600 GeV-cmsCollisionerror: statisticalYield (chemistry)e-e Experimentselectron positron --> eta psi(3685)colliding beams [electron positron]High Energy Physics::ExperimentCenter of masscross section: energy dependence: measuredchannel cross section: measuredStorage ringexperimental results
researchProduct

Miniature magnetic devices for laser-based, table-top free-electron lasers

2007

Truly table-top sized radiation sources based on compact laser-plasma accelerators require compact and strong focusing devices and efficient short-period undulators. Complementing our recent theoretical work on the feasibility of a table-top FEL, we here present the design and successful experimental characterizations of a 5 mm period length undulator and miniature quadrupole magnets with field gradients of the order of $500\text{ }\text{ }\mathrm{T}/\mathrm{m}$.

Free electron modelNuclear and High Energy PhysicsPhysics and Astronomy (miscellaneous)Field (physics)41.75.JvRadiationlaw.inventionOpticslaw41.60.Crlcsh:Nuclear and particle physics. Atomic energy. RadioactivityQuadrupole magnetPhysicsFELbusiness.industryOrder (ring theory)magnet designSurfaces and InterfacesUndulatorLaserpacs:41.85.Lc52.38.KdOptoelectronicsPhysics::Accelerator Physicslcsh:QC770-798Strong focusingbusinessPhysical Review Special Topics. Accelerators and Beams
researchProduct

Observable flavor violation from spontaneous lepton number breaking

2022

We propose a simple model of spontaneous lepton number violation with potentially large flavor violating decays, including the possibility that majoron emitting decays, such as $\mu \to e \, J$, saturate the experimental bounds. In this model the majoron is a singlet-doublet admixture. It generates a type-I seesaw for neutrino masses and contains also a vector-like lepton. As a by-product, the model can explain the anomalous $(g-2)_{\mu}$ in parts of its parameter space, where one expects that the branching ratio of the Higgs to muons is changed with respect to Standard Model expectations. However, the explanation of the muon $g-2$ anomaly would lead to tension with recent astrophysical bou…

Global SymmetriesHigh Energy Physics - PhenomenologyNuclear and High Energy PhysicsHigh Energy Physics - Phenomenology (hep-ph)Nuclear and particle physics. Atomic energy. RadioactivityComputer Science::Information RetrievalBeyond Standard ModelHigh Energy Physics::PhenomenologyFísicaFOS: Physical sciencesNeutrino PhysicsHigh Energy Physics::ExperimentQC770-798Journal of High Energy Physics
researchProduct

The Inverse Seesaw Family: Dirac And Majorana

2021

After developing a general criterion for deciding which neutrino mass models belong to the category of inverse seesaw models, we apply it to obtain the Dirac analogue of the canonical Majorana inverse seesaw model. We then generalize the inverse seesaw model and obtain a class of inverse seesaw mechanisms both for Majorana and Dirac neutrinos. We further show that many of the models have double or multiple suppressions coming from tiny symmetry breaking "$\mu$-terms". These models can be tested both in colliders and with the observation of lepton flavour violating processes.

Global SymmetriesPhysicsNuclear and High Energy PhysicsClass (set theory)010308 nuclear & particles physicsDirac (video compression format)High Energy Physics::PhenomenologyFOS: Physical sciencesInverse01 natural sciencesMAJORANATheoretical physicsHigh Energy Physics - PhenomenologyHigh Energy Physics - Phenomenology (hep-ph)Seesaw molecular geometryBeyond Standard Model0103 physical scienceslcsh:QC770-798Neutrino Physicslcsh:Nuclear and particle physics. Atomic energy. RadioactivityHigh Energy Physics::ExperimentSymmetry breakingNeutrino010306 general physicsLepton
researchProduct

Stimulated transitions in resonant atom Majorana mixing

2018

Massive neutrinos demand to ask whether they are Dirac or Majorana particles. Majorana neutrinos are an irrefutable proof of physics beyond the Standard Model. Neutrinoless double electron capture is not a process but a virtual $\Delta L = 2$ mixing between a parent $^AZ$ atom and a daughter $^A(Z-2)$ excited atom with two electron holes. As a mixing between two neutral atoms and the observable signal in terms of emitted two-hole X-rays, the strategy, experimental signature and background are different from neutrinoless double beta decay. The mixing is resonantly enhanced for almost degeneracy and, under these conditions, there is no irreducible background from the standard two-neutrino cha…

Global SymmetriesPhysicsNuclear and High Energy Physicseducation.field_of_study010308 nuclear & particles physicsElectron capturePopulationFOS: Physical sciences01 natural sciencesHigh Energy Physics - PhenomenologyMAJORANAHigh Energy Physics - Phenomenology (hep-ph)Double beta decayExcited stateBeyond Standard Model0103 physical sciencesAtomlcsh:QC770-798Neutrino Physicslcsh:Nuclear and particle physics. Atomic energy. RadioactivityNeutrinoAtomic physics010306 general physicseducationGround stateJournal of High Energy Physics
researchProduct

Mapping nonlinear gravity into General Relativity with nonlinear electrodynamics

2018

We show that families of nonlinear gravity theories formulated in a metric-affine approach and coupled to a nonlinear theory of electrodynamics can be mapped into General Relativity (GR) coupled to another nonlinear theory of electrodynamics. This allows to generate solutions of the former from those of the latter using purely algebraic transformations. This correspondence is explicitly illustrated with the Eddington-inspired Born-Infeld theory of gravity, for which we consider a family of nonlinear electrodynamics and show that, under the map, preserve their algebraic structure. For the particular case of Maxwell electrodynamics coupled to Born-Infeld gravity we find, via this corresponden…

Gravity (chemistry)Physics and Astronomy (miscellaneous)Algebraic structureGeneral relativityFOS: Physical scienceslcsh:AstrophysicsGeneral Relativity and Quantum Cosmology (gr-qc)01 natural sciencesGeneral Relativity and Quantum CosmologyGravitationlcsh:QB460-4660103 physical scienceslcsh:Nuclear and particle physics. Atomic energy. Radioactivity010306 general physicsEngineering (miscellaneous)Metric-affine approachPhysics010308 nuclear & particles physicsNumerical analysisNonlinear theoryPower (physics)Nonlinear gravity theoriesNonlinear systemQuantum electrodynamicslcsh:QC770-798Regular Article - Theoretical Physics
researchProduct

Searches for transverse momentum dependent flow vector fluctuations in Pb-Pb and p-Pb collisions at the LHC

2017

The measurement of azimuthal correlations of charged particles is presented for Pb-Pb collisions at $\sqrt{s_{\rm NN}}=$ 2.76 TeV and p-Pb collisions at $\sqrt{s_{\rm NN}}=$ 5.02 TeV with the ALICE detector at the CERN Large Hadron Collider. These correlations are measured for the second, third and fourth order flow vector in the pseudorapidity region $|��|<0.8$ as a function of centrality and transverse momentum $p_{\rm T}$ using two observables, to search for evidence of $p_{\rm T}$-dependent flow vector fluctuations. For Pb-Pb collisions at 2.76 TeV, the measurements indicate that $p_{\rm T}$-dependent fluctuations are only present for the second order flow vector. Similar results hav…

HEAVY-ION COLLISIONSnucl-extransverse momentum dependenceCOLLABORATIONangular correlation [charged particle]High Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)ALICEmodel: hydrodynamicstransport theory[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Nuclear Experiment (nucl-ex)[ PHYS.NEXP ] Physics [physics]/Nuclear Experiment [nucl-ex]Nuclear ExperimentNuclear ExperimentMonte CarloHeavy Ion Experiments; RELATIVISTIC NUCLEAR COLLISIONS; HEAVY-ION COLLISIONS; QUARK-GLUON; PLASMA; COLLECTIVE FLOW; COLLABORATIONPLASMAfluctuation [geometry]flow: anisotropygeometry: fluctuationQUARK-GLUONCERN LHC CollHeavy Ion Experiments; Nuclear and High Energy PhysicsflowRELATIVISTIC NUCLEAR COLLISIONSHeavy Ion ExperimentQuark-Gluon PlasmaParticle Physics - Experiment2760 GeV/nucleon5020 GeV/nucleonNuclear and High Energy PhysicsCERN LabCOLLECTIVE FLOWFOS: Physical sciencestransverse momentum[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]vector [fluctuation]Heavy Ion Experimentsscattering [heavy ion][ PHYS.HEXP ] Physics [physics]/High Energy Physics - Experiment [hep-ex]factorizationlcsh:Nuclear and particle physics. Atomic energy. Radioactivityddc:530hydrodynamics [model]Nuclear Physics - Experimentnumerical calculationsinitial stateleadHeavy Ion Experiments Nuclear and High Energy Physics.hep-exboundary conditionrapiditycorrelationviscositylcsh:QC770-798High Energy Physics::Experimentp nucleusentropy: densitycharged particle: angular correlationexperimental results
researchProduct

Contribution of exclusive diffractive processes to the measured azimuthal asymmetries in SIDIS

2019

Hadron leptoproduction in Semi-Inclusive measurements of Deep-Inelastic Scattering (SIDIS) on unpolarised nucleons allows one to get information on the intrinsic transverse momentum of quarks in a nucleon and on the Boer-Mulders function through the measurement of azimuthal modulations in the cross section. These modulations were recently measured by the HERMES experiment at DESY on proton and deuteron targets, and by the COMPASS experiment using the CERN SPS muon beam and a $^6$LiD target. In both cases, the amplitudes of the $\cos\phi_h$ and $\cos 2\phi_h$ modulations show strong kinematic dependences for both positive and negative hadrons. It has been known since some time that the measu…

HERMES experimentvirtual [photon]Hadronleptoproduction [hadron]measurement methodsNuclear TheoryVirtual particleHERMES01 natural sciencesSIDISCOMPASShadron: leptoproductionHigh Energy Physics - Experimentazimthal asymmetrieproduction [diffraction]High Energy Physics - Experiment (hep-ex)High Energy Physics - Phenomenology (hep-ph)semi-inclusive reaction [deep inelastic scattering][PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]COMPASS experimentNuclear ExperimentPhysicsdeep inelastic scattering: semi-inclusive reactionnucleonhep-phphoton: energyTMD obsvervableangular dependenceHigh Energy Physics - Phenomenologymodulationhadron: final stateTMD obsvervablesbeam [muon]asymmetry [angular distribution]interpretation of experimentsdeuteron: targettransverse momentum [quark]Nucleondiffraction: productionParticle Physics - ExperimentQuarkNuclear and High Energy PhysicsParticle physicsazimthal asymmetriesexclusive reactionangular distribution: asymmetryMesonFOS: Physical sciences530vector meson: production0103 physical scienceskinematics: effectlcsh:Nuclear and particle physics. Atomic energy. Radioactivityddc:530final state [hadron]010306 general physicsParticle Physics - PhenomenologyMuonmuon: beam010308 nuclear & particles physicsproduction [vector meson]hep-exenergy [photon]CERN SPSeffect [kinematics]lcsh:QC770-798quark: transverse momentumHigh Energy Physics::ExperimentTMD obsvervables; azimthal asymmetries; SIDIStarget [deuteron]photon: virtual
researchProduct