Search results for "QC770"

showing 10 items of 270 documents

Quantum transport and the phase space structure of the Wightman functions

2019

We study the phase space structure of exact quantum Wightman functions in spatially homogeneous, temporally varying systems. In addition to the usual mass shells, the Wightman functions display additional coherence shells around zero frequency $k_0=0$, which carry the information of the local quantum coherence of particle-antiparticle pairs. We find also other structures, which encode non-local correlations in time, and discuss their role and decoherence. We give a simple derivation of the cQPA formalism, a set of quantum transport equations, that can be used to study interacting systems including the local quantum coherence. We compute quantum currents created by a temporal change in a par…

High Energy Physics - TheoryNuclear and High Energy PhysicsAstrophysics and AstronomyLEPTOGENESISCosmology and Nongalactic Astrophysics (astro-ph.CO)Quantum decoherencegr-qcFOS: Physical sciencesSemiclassical physicsGeneral Relativity and Quantum Cosmology (gr-qc)114 Physical sciences01 natural sciencesGeneral Relativity and Quantum CosmologyHigh Energy Physics - Phenomenology (hep-ph)0103 physical scienceslcsh:Nuclear and particle physics. Atomic energy. RadioactivityThermal Field Theory010306 general physicsQuantumELECTROWEAK BARYOGENESISParticle Physics - PhenomenologyPhysicsThermal quantum field theory010308 nuclear & particles physicsGeneral Relativity and Cosmologyhep-thhep-phFermionFERMIONSBaryogenesisHigh Energy Physics - PhenomenologyCP violationClassical mechanicsHigh Energy Physics - Theory (hep-th)Phase spaceastro-ph.COlcsh:QC770-798Quantum Dissipative SystemsParticle Physics - TheoryAstrophysics - Cosmology and Nongalactic AstrophysicsCoherence (physics)
researchProduct

Efficient resummation of high post-Newtonian contributions to the binding energy

2021

A factorisation property of Feynman diagrams in the context the Effective Field Theory approach to the compact binary problem has been recently employed to efficiently determine the static sector of the potential at fifth post-Newtonian (5PN) order. We extend this procedure to the case of non-static diagrams and we use it to fix, by means of elementary algebraic manipulations, the value of more than one thousand diagrams at 5PN order, that is a substantial fraction of the diagrams needed to fully determine the dynamics at 5PN. This procedure addresses the redundancy problem that plagues the computation of the binding energy with respect to more "efficient" observables like the scattering an…

High Energy Physics - TheoryNuclear and High Energy PhysicsBlack HolesComputationFOS: Physical sciencesBinary numberContext (language use)General Relativity and Quantum Cosmology (gr-qc)01 natural sciencesGeneral Relativity and Quantum Cosmologysymbols.namesake0103 physical sciencesEffective field theoryFeynman diagramlcsh:Nuclear and particle physics. Atomic energy. RadioactivityStatistical physicsAlgebraic numberResummation010306 general physicsPhysics010308 nuclear & particles physicsEffective Field TheoriesObservableHigh Energy Physics - Theory (hep-th)symbolslcsh:QC770-798Classical Theories of GravityJournal of High Energy Physics
researchProduct

Hairy black-holes in shift-symmetric theories

2020

Scalar hair of black holes in theories with a shift symmetry are constrained by the no-hair theorem of Hui and Nicolis, assuming spherical symmetry, time-independence of the scalar field and asymptotic flatness. The most studied counterexample is a linear coupling of the scalar with the Gauss-Bonnet invariant. However, in this case the norm of the shift-symmetry current $J^2$ diverges at the horizon casting doubts on whether the solution is physically sound. We show that this is not an issue since $J^2$ is not a scalar quantity, since $J^\mu$ is not a diff-invariant current in the presence of Gauss-Bonnet. The same theory can be written in Horndeski form with a non-analytic function $G_5 \s…

High Energy Physics - TheoryNuclear and High Energy PhysicsBlack HolesCosmology and Nongalactic Astrophysics (astro-ph.CO)FOS: Physical sciencesGeneral Relativity and Quantum Cosmology (gr-qc)01 natural sciencesGeneral Relativity and Quantum CosmologyGeneral Relativity and Quantum Cosmology0103 physical scienceslcsh:Nuclear and particle physics. Atomic energy. Radioactivity010306 general physicsPhysical quantityMathematical physicsPhysics010308 nuclear & particles physicsScalar (physics)Black HoleInvariant (physics)Linear couplingSettore FIS/02 - Fisica Teorica Modelli e Metodi MatematiciHigh Energy Physics - Theory (hep-th)astro-ph.COlcsh:QC770-798Circular symmetryScalar fieldClassical Theories of GravityAstrophysics - Cosmology and Nongalactic AstrophysicsCounterexample
researchProduct

Matter dependence of the four-loop QCD cusp anomalous dimension: from small angles to all angles

2019

We compute the fermionic contributions to the cusp anomalous dimension in QCD at four loops as an expansion for small cusp angle. As a byproduct we also obtain the respective terms of the four-loop HQET wave function anomalous dimension. Our new results at small angles provide stringent tests of a recent conjecture for the exact angle dependence of the matter terms in the four-loop cusp anomalous dimension. We find that the conjecture does not hold for two of the seven fermionic color structures, but passes all tests for the remaining terms. This provides strong support for the validity of the corresponding conjectured expressions with full angle dependence. Taking the limit of large Minkow…

High Energy Physics - TheoryNuclear and High Energy PhysicsConformal anomalyFOS: Physical sciencesConformal map01 natural sciencesTheoretical physicsHigh Energy Physics - Phenomenology (hep-ph)Dimension (vector space)Perturbative QCD0103 physical scienceslcsh:Nuclear and particle physics. Atomic energy. RadioactivityScattering Amplitudes010306 general physicsWave functionQuantum chromodynamicsCusp (singularity)Physics010308 nuclear & particles physicsPerturbative QCDEffective Field TheoriesWilson ’t Hooft and Polyakov loopsScattering amplitudeHigh Energy Physics - PhenomenologyHigh Energy Physics - Theory (hep-th)lcsh:QC770-798Journal of High Energy Physics
researchProduct

Tensor bounds on the hidden universe

2018

During single clock inflation, hidden fields (i.e. fields coupled to the inflaton only gravitationally) in their adiabatic vacua can ordinarily only affect observables through virtual effects. After renormalizing background quantities (fixed by observations at some pivot scale), all that remains are logarithmic runnings in correlation functions that are both Planck and slow roll suppressed. In this paper we show how a large number of hidden fields can partially compensate this suppression and generate a potentially observable running in the tensor two point function, consistently inferable courtesy of a large $N$ resummation. We detour to address certain subtleties regarding loop correction…

High Energy Physics - TheoryNuclear and High Energy PhysicsCosmology and Nongalactic Astrophysics (astro-ph.CO)media_common.quotation_subjectCosmic microwave backgroundFOS: Physical sciencesGeneral Relativity and Quantum Cosmology (gr-qc)ddc:500.201 natural sciencesGeneral Relativity and Quantum Cosmologysymbols.namesakeTheoretical physicsHigh Energy Physics - Phenomenology (hep-ph)0103 physical scienceslcsh:Nuclear and particle physics. Atomic energy. RadioactivityTensorPlanck010306 general physicsmedia_commonPhysicsInflation (cosmology)Slow roll010308 nuclear & particles physicsScalar (physics)InflatonCosmology of Theories beyond the SMUniverseHigh Energy Physics - PhenomenologyHigh Energy Physics - Theory (hep-th)symbolslcsh:QC770-798Renormalization Regularization and RenormalonsAstrophysics - Cosmology and Nongalactic AstrophysicsJournal of High Energy Physics
researchProduct

Non-equilibrium dynamics of a scalar field with quantum backreaction

2021

We study the dynamical evolution of coupled one- and two-point functions of a scalar field in the 2PI framework at the Hartree approximation, including backreaction from out-of-equilibrium modes. We renormalize the 2PI equations of motion in an on-shell scheme in terms of physical parameters. We present the Hartree-resummed renormalized effective potential at finite temperature and critically discuss the role of the effective potential in a non-equilibrium system. We follow the decay and thermalization of a scalar field from an initial cold state with all energy stored in the potential, into a fully thermalized system with a finite temperature. We identify the non-perturbative processes of …

High Energy Physics - TheoryNuclear and High Energy PhysicsCosmology and Nongalactic Astrophysics (astro-ph.CO)quantum dissipative systemsFOS: Physical sciencesGeneral Relativity and Quantum Cosmology (gr-qc)QC770-798hiukkasfysiikkakosmologia114 Physical sciences01 natural sciencesGeneral Relativity and Quantum CosmologyHigh Energy Physics - Phenomenology (hep-ph)Nuclear and particle physics. Atomic energy. Radioactivity0103 physical sciencesThermal Field Theory010306 general physics010308 nuclear & particles physicsthermal field theoryHigh Energy Physics - PhenomenologyHigh Energy Physics - Theory (hep-th)Nonperturbative Effectsnonperturbative effectskvanttikenttäteoriaQuantum Dissipative SystemsAstrophysics - Cosmology and Nongalactic AstrophysicsJournal of High Energy Physics
researchProduct

High-energy evolution to three loops

2018

The Balitsky-Kovchegov equation describes the high-energy growth of gauge theory scattering amplitudes as well as nonlinear saturation effects which stop it. We obtain the three-loop corrections to this equation in planar $\mathcal{N}=4$ super Yang-Mills theory. Our method exploits a recently established equivalence with the physics of soft wide-angle radiation, so-called non-global logarithms, and thus yields at the same time the three-loop evolution equation for non-global logarithms. As a by-product of our analysis, we develop a Lorentz-covariant method to subtract infrared and collinear divergences in cross-section calculations in the planar limit. We compare our result in the linear re…

High Energy Physics - TheoryNuclear and High Energy PhysicsDifferential equationFOS: Physical sciencesYang–Mills theory01 natural sciences114 Physical sciencesperturbative QCDSupersymmetric Gauge TheoryPomeronHARMONIC POLYLOGARITHMSHigh Energy Physics - Phenomenology (hep-ph)supersymmetriaPerturbative QCD0103 physical scienceslcsh:Nuclear and particle physics. Atomic energy. RadioactivityGauge theoryLimit (mathematics)Scattering Amplitudes010306 general physicsQCD AMPLITUDESsupersymmetric gauge theoryMathematical physicsPhysicsPOMERONta114010308 nuclear & particles physicsMASS SINGULARITIESPerturbative QCDDIFFERENTIAL-EQUATIONSscattering amplitudesScattering amplitudeHigh Energy Physics - PhenomenologyHigh Energy Physics - Theory (hep-th)Supersymmetric gauge theoryresummationYANG-MILLS THEORYlcsh:QC770-798ResummationkvanttikenttäteoriaTO-LEADING ORDERGAUGE-THEORYAPPROXIMATIONJournal of High Energy Physics
researchProduct

Complete integration-by-parts reductions of the non-planar hexagon-box via module intersections

2018

We present the powerful module-intersection integration-by-parts (IBP) method, suitable for multi-loop and multi-scale Feynman integral reduction. Utilizing modern computational algebraic geometry techniques, this new method successfully trims traditional IBP systems dramatically to much simpler integral-relation systems on unitarity cuts. We demonstrate the power of this method by explicitly carrying out the complete analytic reduction of two-loop five-point non-planar hexagon-box integrals, with degree-four numerators, to a basis of 73 master integrals.

High Energy Physics - TheoryNuclear and High Energy PhysicsFeynman integralFOS: Physical sciencesAlgebraic geometryTopologyDifferential and Algebraic Geometry; Scattering Amplitudes; Perturbative QCD01 natural sciencesSubatomär fysikReduction (complexity)Mathematics - Algebraic GeometryPlanarHigh Energy Physics - Phenomenology (hep-ph)Subatomic Physics0103 physical sciencesPerturbative QCDFOS: MathematicsIntegration by partsDifferential and Algebraic Geometrylcsh:Nuclear and particle physics. Atomic energy. Radioactivity010306 general physicsScattering AmplitudesAlgebraic Geometry (math.AG)PhysicsBasis (linear algebra)Unitarity010308 nuclear & particles physicsPower (physics)High Energy Physics - PhenomenologyHigh Energy Physics - Theory (hep-th)lcsh:QC770-798Journal of High Energy Physics
researchProduct

Implications of nonplanar dual conformal symmetry

2018

Recently, Bern et al observed that a certain class of next-to-planar Feynman integrals possess a bonus symmetry that is closely related to dual conformal symmetry. It corresponds to a projection of the latter along a certain lightlike direction. Previous studies were performed at the level of the loop integrand, and a Ward identity for the integral was formulated. We investigate the implications of the symmetry at the level of the integrated quantities. In particular, we focus on the phenomenologically important case of five-particle scattering. The symmetry simplifies the four-variable problem to a three-variable one. In the context of the recently proposed space of pentagon functions, the…

High Energy Physics - TheoryNuclear and High Energy PhysicsFunction spaceFeynman graphFOS: Physical sciencesanomalyContext (language use)Ward identitySpace (mathematics)Conformal and W Symmetry01 natural sciencesProjection (linear algebra)Identity (mathematics)High Energy Physics - Phenomenology (hep-ph)Conformal symmetry0103 physical scienceslcsh:Nuclear and particle physics. Atomic energy. RadioactivityAnomalies in Field and String Theories010306 general physicsScattering AmplitudesParticle Physics - PhenomenologyMathematical physicsPhysicsloop integral010308 nuclear & particles physics[PHYS.HTHE]Physics [physics]/High Energy Physics - Theory [hep-th]hep-thscattering amplitudehep-phSymmetry (physics)Loop (topology)High Energy Physics - PhenomenologyHigh Energy Physics - Theory (hep-th)symmetry: conformalsupersymmetry: 4[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph]lcsh:QC770-798dualityParticle Physics - Theoryinfrared problem
researchProduct

Modular fluxes, elliptic genera, and weak gravity conjectures in four dimensions

2019

We analyse the Weak Gravity Conjecture for chiral four-dimensional F-theory compactifications with N=1 supersymmetry. Extending our previous work on nearly tensionless heterotic strings in six dimensions, we show that under certain assumptions a tower of asymptotically massless states arises in the limit of vanishing coupling of a U(1) gauge symmetry coupled to gravity. This tower contains super-extremal states whose charge-to-mass ratios are larger than those of certain extremal dilatonic Reissner-Nordstrom black holes, precisely as required by the Weak Gravity Conjecture. Unlike in six dimensions, the tower of super-extremal states does not always populate a charge sub-lattice. The main t…

High Energy Physics - TheoryNuclear and High Energy PhysicsGravity (chemistry)FOS: Physical sciencesF-TheoryTopological Strings01 natural sciencesTheoretical physicsGeneral Relativity and Quantum CosmologyHigh Energy Physics::TheorySuperstrings and Heterotic Strings0103 physical scienceslcsh:Nuclear and particle physics. Atomic energy. Radioactivity010306 general physicsGauge symmetryPhysicsHeterotic string theory010308 nuclear & particles physicshep-thCharge (physics)SupersymmetryF-theoryHigh Energy Physics - Theory (hep-th)lcsh:QC770-798String DualityMirror symmetryParticle Physics - TheoryString dualityJournal of High Energy Physics
researchProduct