Search results for "QC770"
showing 10 items of 270 documents
Quantum transport and the phase space structure of the Wightman functions
2019
We study the phase space structure of exact quantum Wightman functions in spatially homogeneous, temporally varying systems. In addition to the usual mass shells, the Wightman functions display additional coherence shells around zero frequency $k_0=0$, which carry the information of the local quantum coherence of particle-antiparticle pairs. We find also other structures, which encode non-local correlations in time, and discuss their role and decoherence. We give a simple derivation of the cQPA formalism, a set of quantum transport equations, that can be used to study interacting systems including the local quantum coherence. We compute quantum currents created by a temporal change in a par…
Efficient resummation of high post-Newtonian contributions to the binding energy
2021
A factorisation property of Feynman diagrams in the context the Effective Field Theory approach to the compact binary problem has been recently employed to efficiently determine the static sector of the potential at fifth post-Newtonian (5PN) order. We extend this procedure to the case of non-static diagrams and we use it to fix, by means of elementary algebraic manipulations, the value of more than one thousand diagrams at 5PN order, that is a substantial fraction of the diagrams needed to fully determine the dynamics at 5PN. This procedure addresses the redundancy problem that plagues the computation of the binding energy with respect to more "efficient" observables like the scattering an…
Hairy black-holes in shift-symmetric theories
2020
Scalar hair of black holes in theories with a shift symmetry are constrained by the no-hair theorem of Hui and Nicolis, assuming spherical symmetry, time-independence of the scalar field and asymptotic flatness. The most studied counterexample is a linear coupling of the scalar with the Gauss-Bonnet invariant. However, in this case the norm of the shift-symmetry current $J^2$ diverges at the horizon casting doubts on whether the solution is physically sound. We show that this is not an issue since $J^2$ is not a scalar quantity, since $J^\mu$ is not a diff-invariant current in the presence of Gauss-Bonnet. The same theory can be written in Horndeski form with a non-analytic function $G_5 \s…
Matter dependence of the four-loop QCD cusp anomalous dimension: from small angles to all angles
2019
We compute the fermionic contributions to the cusp anomalous dimension in QCD at four loops as an expansion for small cusp angle. As a byproduct we also obtain the respective terms of the four-loop HQET wave function anomalous dimension. Our new results at small angles provide stringent tests of a recent conjecture for the exact angle dependence of the matter terms in the four-loop cusp anomalous dimension. We find that the conjecture does not hold for two of the seven fermionic color structures, but passes all tests for the remaining terms. This provides strong support for the validity of the corresponding conjectured expressions with full angle dependence. Taking the limit of large Minkow…
Tensor bounds on the hidden universe
2018
During single clock inflation, hidden fields (i.e. fields coupled to the inflaton only gravitationally) in their adiabatic vacua can ordinarily only affect observables through virtual effects. After renormalizing background quantities (fixed by observations at some pivot scale), all that remains are logarithmic runnings in correlation functions that are both Planck and slow roll suppressed. In this paper we show how a large number of hidden fields can partially compensate this suppression and generate a potentially observable running in the tensor two point function, consistently inferable courtesy of a large $N$ resummation. We detour to address certain subtleties regarding loop correction…
Non-equilibrium dynamics of a scalar field with quantum backreaction
2021
We study the dynamical evolution of coupled one- and two-point functions of a scalar field in the 2PI framework at the Hartree approximation, including backreaction from out-of-equilibrium modes. We renormalize the 2PI equations of motion in an on-shell scheme in terms of physical parameters. We present the Hartree-resummed renormalized effective potential at finite temperature and critically discuss the role of the effective potential in a non-equilibrium system. We follow the decay and thermalization of a scalar field from an initial cold state with all energy stored in the potential, into a fully thermalized system with a finite temperature. We identify the non-perturbative processes of …
High-energy evolution to three loops
2018
The Balitsky-Kovchegov equation describes the high-energy growth of gauge theory scattering amplitudes as well as nonlinear saturation effects which stop it. We obtain the three-loop corrections to this equation in planar $\mathcal{N}=4$ super Yang-Mills theory. Our method exploits a recently established equivalence with the physics of soft wide-angle radiation, so-called non-global logarithms, and thus yields at the same time the three-loop evolution equation for non-global logarithms. As a by-product of our analysis, we develop a Lorentz-covariant method to subtract infrared and collinear divergences in cross-section calculations in the planar limit. We compare our result in the linear re…
Complete integration-by-parts reductions of the non-planar hexagon-box via module intersections
2018
We present the powerful module-intersection integration-by-parts (IBP) method, suitable for multi-loop and multi-scale Feynman integral reduction. Utilizing modern computational algebraic geometry techniques, this new method successfully trims traditional IBP systems dramatically to much simpler integral-relation systems on unitarity cuts. We demonstrate the power of this method by explicitly carrying out the complete analytic reduction of two-loop five-point non-planar hexagon-box integrals, with degree-four numerators, to a basis of 73 master integrals.
Implications of nonplanar dual conformal symmetry
2018
Recently, Bern et al observed that a certain class of next-to-planar Feynman integrals possess a bonus symmetry that is closely related to dual conformal symmetry. It corresponds to a projection of the latter along a certain lightlike direction. Previous studies were performed at the level of the loop integrand, and a Ward identity for the integral was formulated. We investigate the implications of the symmetry at the level of the integrated quantities. In particular, we focus on the phenomenologically important case of five-particle scattering. The symmetry simplifies the four-variable problem to a three-variable one. In the context of the recently proposed space of pentagon functions, the…
Modular fluxes, elliptic genera, and weak gravity conjectures in four dimensions
2019
We analyse the Weak Gravity Conjecture for chiral four-dimensional F-theory compactifications with N=1 supersymmetry. Extending our previous work on nearly tensionless heterotic strings in six dimensions, we show that under certain assumptions a tower of asymptotically massless states arises in the limit of vanishing coupling of a U(1) gauge symmetry coupled to gravity. This tower contains super-extremal states whose charge-to-mass ratios are larger than those of certain extremal dilatonic Reissner-Nordstrom black holes, precisely as required by the Weak Gravity Conjecture. Unlike in six dimensions, the tower of super-extremal states does not always populate a charge sub-lattice. The main t…