Search results for "QC770"

showing 10 items of 270 documents

Pileup and underlying event mitigation with iterative constituent subtraction

2019

Abstract The hard-scatter processes in hadronic collisions are often largely contaminated with soft background coming from pileup in proton-proton collisions, or underlying event in heavy-ion collisions. This paper presents a new background subtraction method for jets and event observables (such as missing transverse energy) which is based on the previously published Constituent Subtraction algorithm. The new subtraction method, called Iterative Constituent Subtraction, applies event-wide implementation of Constituent Subtraction iteratively in order to fully equilibrate the background subtraction across the entire event. Besides documenting the new method, we provide guidelines for setting…

Nuclear and High Energy PhysicsParticle physicsSubtraction methodFOS: Physical sciences01 natural sciencesMinimum biasHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)High Energy Physics - Phenomenology (hep-ph)Hadron-Hadron scattering (experiments)0103 physical sciencesJetslcsh:Nuclear and particle physics. Atomic energy. RadioactivityHardware_ARITHMETICANDLOGICSTRUCTURES010306 general physicsNuclear ExperimentEvent (probability theory)PhysicsBackground subtractionHard scattering010308 nuclear & particles physicsSubtractionObservableHigh Energy Physics - Phenomenologylcsh:QC770-798AlgorithmJet substructureEnergy (signal processing)Underlying eventFree parameterJournal of High Energy Physics
researchProduct

Magnetic fields in heavy ion collisions: flow and charge transport

2020

At the earliest times after a heavy-ion collision, the magnetic field created by the spectator nucleons will generate an extremely strong, albeit rapidly decreasing in time, magnetic field. The impact of this magnetic field may have detectable consequences, and is believed to drive anomalous transport effects like the Chiral Magnetic Effect (CME). We detail an exploratory study on the effects of a dynamical magnetic field on the hydrodynamic medium created in the collisions of two ultrarelativistic heavy-ions, using the framework of numerical ideal MagnetoHydroDynamics (MHD) with the ECHO-QGP code. In this study, we consider a magnetic field captured in a conducting medium, where the conduc…

Computer Science::Machine LearningParticle physicsPhysics and Astronomy (miscellaneous)Nuclear Theoryheavy ion collisionsFOS: Physical scienceslcsh:Astrophysicsmagnetic fieldshiukkasfysiikkamagneettikentätComputer Science::Digital Libraries01 natural sciencesElectric charge530Nuclear Theory (nucl-th)Statistics::Machine LearningHigh Energy Physics - Phenomenology (hep-ph)0103 physical scienceslcsh:QB460-466ddc:530lcsh:Nuclear and particle physics. Atomic energy. RadioactivityNuclear Experiment (nucl-ex)010306 general physicsNuclear ExperimentEngineering (miscellaneous)Nuclear ExperimentPhysicsCharge conservation010308 nuclear & particles physicsElliptic flowCharge (physics)FermionMagnetic fieldDipoleHigh Energy Physics - PhenomenologyQuantum electrodynamicsComputer Science::Mathematical Softwarelcsh:QC770-798MagnetohydrodynamicsThe European Physical Journal C
researchProduct

Searches for transverse momentum dependent flow vector fluctuations in Pb-Pb and p-Pb collisions at the LHC

2017

The measurement of azimuthal correlations of charged particles is presented for Pb-Pb collisions at $\sqrt{s_{\rm NN}}=$ 2.76 TeV and p-Pb collisions at $\sqrt{s_{\rm NN}}=$ 5.02 TeV with the ALICE detector at the CERN Large Hadron Collider. These correlations are measured for the second, third and fourth order flow vector in the pseudorapidity region $|��|<0.8$ as a function of centrality and transverse momentum $p_{\rm T}$ using two observables, to search for evidence of $p_{\rm T}$-dependent flow vector fluctuations. For Pb-Pb collisions at 2.76 TeV, the measurements indicate that $p_{\rm T}$-dependent fluctuations are only present for the second order flow vector. Similar results hav…

HEAVY-ION COLLISIONSnucl-extransverse momentum dependenceCOLLABORATIONangular correlation [charged particle]High Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)ALICEmodel: hydrodynamicstransport theory[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Nuclear Experiment (nucl-ex)[ PHYS.NEXP ] Physics [physics]/Nuclear Experiment [nucl-ex]Nuclear ExperimentNuclear ExperimentMonte CarloHeavy Ion Experiments; RELATIVISTIC NUCLEAR COLLISIONS; HEAVY-ION COLLISIONS; QUARK-GLUON; PLASMA; COLLECTIVE FLOW; COLLABORATIONPLASMAfluctuation [geometry]flow: anisotropygeometry: fluctuationQUARK-GLUONCERN LHC CollHeavy Ion Experiments; Nuclear and High Energy PhysicsflowRELATIVISTIC NUCLEAR COLLISIONSHeavy Ion ExperimentQuark-Gluon PlasmaParticle Physics - Experiment2760 GeV/nucleon5020 GeV/nucleonNuclear and High Energy PhysicsCERN LabCOLLECTIVE FLOWFOS: Physical sciencestransverse momentum[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]vector [fluctuation]Heavy Ion Experimentsscattering [heavy ion][ PHYS.HEXP ] Physics [physics]/High Energy Physics - Experiment [hep-ex]factorizationlcsh:Nuclear and particle physics. Atomic energy. Radioactivityddc:530hydrodynamics [model]Nuclear Physics - Experimentnumerical calculationsinitial stateleadHeavy Ion Experiments Nuclear and High Energy Physics.hep-exboundary conditionrapiditycorrelationviscositylcsh:QC770-798High Energy Physics::Experimentp nucleusentropy: densitycharged particle: angular correlationexperimental results
researchProduct

First operation of the KATRIN experiment with tritium

2020

AbstractThe determination of the neutrino mass is one of the major challenges in astroparticle physics today. Direct neutrino mass experiments, based solely on the kinematics of $$\upbeta $$β-decay, provide a largely model-independent probe to the neutrino mass scale. The Karlsruhe Tritium Neutrino (KATRIN) experiment is designed to directly measure the effective electron antineutrino mass with a sensitivity of $$0.2\hbox { eV}$$0.2eV ($$90\%$$90% CL). In this work we report on the first operation of KATRIN with tritium which took place in 2018. During this commissioning phase of the tritium circulation system, excellent agreement of the theoretical prediction with the recorded spectra was …

Physics - Instrumentation and DetectorsCosmology and Nongalactic Astrophysics (astro-ph.CO)Physics and Astronomy (miscellaneous)Physics::Instrumentation and DetectorsFOS: Physical scienceslcsh:Astrophysics[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]TritiumKATRIN01 natural sciencesantineutrino/e: massHigh Energy Physics - ExperimentNuclear physicsHigh Energy Physics - Experiment (hep-ex)lcsh:QB460-4660103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]lcsh:Nuclear and particle physics. Atomic energy. RadioactivityMass scaleddc:530Electron Capture[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]Nuclear Experiment (nucl-ex)010306 general physicsEngineering (miscellaneous)Nuclear ExperimentAstroparticle physicsPhysics010308 nuclear & particles physicstritiumPhysicsQuímicaInstrumentation and Detectors (physics.ins-det)sensitivityddc:lcsh:QC770-798TritiumHigh Energy Physics::ExperimentNeutrinoPräzisionsexperimente - Abteilung BlaumNeutrino Mass[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]Electron neutrinoperformanceKATRINAstrophysics - Cosmology and Nongalactic Astrophysicsexperimental results
researchProduct

Strong phase transition, dark matter and vacuum stability from simple hidden sectors

2014

Motivated by the possibility to explain dark matter abundance and strong electroweak phase transition, we consider simple extensions of the Standard Model containing singlet fields coupled with the Standard Model via a scalar portal. Concretely, we consider a basic portal model consisting of a singlet scalar with $Z_2$ symmetry and a model containing a singlet fermion connected with the Standard Model fields via a singlet scalar portal. We perform a Monte Carlo analysis of the parameter space of each model, and we find that in both cases the dark matter abundance can be produced either via freeze-out or freeze-in mechanisms, but only in the latter model one can obtain also a strong electrow…

PhysicsParticle physicsNuclear and High Energy PhysicsCosmology and Nongalactic Astrophysics (astro-ph.CO)ta114Physics beyond the Standard ModelScalar (mathematics)Electroweak interactionDark matterHigh Energy Physics::PhenomenologyeducationFOS: Physical sciences114 Physical sciencesSymmetry (physics)Standard ModelHidden sectorBaryogenesisHigh Energy Physics - PhenomenologyHigh Energy Physics - Phenomenology (hep-ph)lcsh:QC770-798lcsh:Nuclear and particle physics. Atomic energy. RadioactivityAstrophysics - Cosmology and Nongalactic AstrophysicsNuclear Physics B
researchProduct

Demonstration of the event identification capabilities of the NEXT-White detector

2019

[EN] In experiments searching for neutrinoless double-beta decay, the possibility of identifying the two emitted electrons is a powerful tool in rejecting background events and therefore improving the overall sensitivity of the experiment. In this paper we present the first measurement of the efficiency of a cut based on the different event signatures of double and single electron tracks, using the data of the NEXT-White detector, the first detector of the NEXT experiment operating underground. Using a 228Th calibration source to produce signal-like and background-like events with energies near 1.6 MeV, a signal efficiency of 71.6 ± 1.5 stat ± 0.3 sys% for a background acceptance of 20.6 ± …

Nuclear and High Energy PhysicsPhysical measurementsPhysics - Instrumentation and DetectorsMonte Carlo methodExtrapolationFísica -- MesuramentsFOS: Physical sciences7. Clean energy01 natural sciencesAtomicMathematical SciencesHigh Energy Physics - ExperimentNuclear physicsTECNOLOGIA ELECTRONICAHigh Energy Physics - Experiment (hep-ex)Particle and Plasma PhysicsDouble beta decay0103 physical sciencesDark Matter and Double Beta Decay (experiments)Calibrationlcsh:Nuclear and particle physics. Atomic energy. RadioactivityNuclearCalibratge010306 general physicsNuclear ExperimentMathematical PhysicsPhysicsQuantum Physics010308 nuclear & particles physicsDetectorMolecularDetectorsInstrumentation and Detectors (physics.ins-det)Nuclear & Particles PhysicsCalibrationPhysical Scienceslcsh:QC770-798High Energy Physics::ExperimentSensitivity (electronics)Event (particle physics)Energy (signal processing)
researchProduct

Toroidal magnetized iron neutrino detector for a neutrino factory

2013

A neutrino factory has unparalleled physics reach for the discovery and measurement of CP violation in the neutrino sector. A far detector for a neutrino factory must have good charge identification with excellent background rejection and a large mass. An elegant solution is to construct a magnetized iron neutrino detector (MIND) along the lines of MINOS, where iron plates provide a toroidal magnetic field and scintillator planes provide 3D space points. In this paper, the current status of a simulation of a toroidal MIND for a neutrino factory is discussed in light of the recent measurements of large theta(13). The response and performance using the 10 GeV neutrino factory configuration ar…

Nuclear and High Energy PhysicsPhysics and Astronomy (miscellaneous)European communityPhysics::Instrumentation and DetectorsAstrophysics::High Energy Astrophysical Phenomena7. Clean energy01 natural sciencesNuclear physics0103 physical sciencesEuropean commissionlcsh:Nuclear and particle physics. Atomic energy. Radioactivity010306 general physicsMonte-carlo generatorPhysics010308 nuclear & particles physicsbusiness.industryPhysicsHigh Energy Physics::PhenomenologyFísicaSurfaces and InterfacesNeutrino detectorWork (electrical)Design studylcsh:QC770-798Christian ministryNeutrino FactoryHigh Energy Physics::ExperimentTelecommunicationsbusiness
researchProduct

Heavy quark diffusion in an overoccupied gluon plasma

2020

We extract the heavy-quark diffusion coefficient \kappa and the resulting momentum broadening in a far-from-equilibrium non-Abelian plasma. We find several features in the time dependence of the momentum broadening: a short initial rapid growth of , followed by linear growth with time due to Langevin-type dynamics and damped oscillations around this growth at the plasmon frequency. We show that these novel oscillations are not easily explained using perturbative techniques but result from an excess of gluons at low momenta. These oscillation are therefore a gauge invariant confirmation of the infrared enhancement we had previously observed in gauge-fixed correlation functions. We argue that…

QuarkNuclear and High Energy PhysicsNuclear Theorynucl-thhep-latFOS: Physical sciencesLattice QCDhiukkasfysiikka01 natural sciences114 Physical sciencesNuclear Theory (nucl-th)High Energy Physics - LatticeHigh Energy Physics - Phenomenology (hep-ph)fysikk0103 physical sciencesHeavy Quark Physicslcsh:Nuclear and particle physics. Atomic energy. Radioactivity010306 general physicsPlasmonParticle Physics - PhenomenologyPhysics:Matematikk og Naturvitenskap: 400::Fysikk: 430 [VDP]010308 nuclear & particles physicsOscillationComputer Science::Information RetrievalHigh Energy Physics - Lattice (hep-lat)Particle Physics - Latticehep-phLattice QCDPlasmaInvariant (physics)GluonHigh Energy Physics - PhenomenologyQuantum electrodynamicsNuclear Physics - TheoryQuark–gluon plasmaQuark-Gluon Plasmalcsh:QC770-798
researchProduct

The liquid-argon scintillation pulseshape in DEAP-3600

2020

AbstractDEAP-3600 is a liquid-argon scintillation detector looking for dark matter. Scintillation events in the liquid argon (LAr) are registered by 255 photomultiplier tubes (PMTs), and pulseshape discrimination (PSD) is used to suppress electromagnetic background events. The excellent PSD performance of LAr makes it a viable target for dark matter searches, and the LAr scintillation pulseshape discussed here is the basis of PSD. The observed pulseshape is a combination of LAr scintillation physics with detector effects. We present a model for the pulseshape of electromagnetic background events in the energy region of interest for dark matter searches. The model is composed of (a) LAr scin…

PhotomultiplierPhysics - Instrumentation and DetectorsPhysics and Astronomy (miscellaneous)Physics::Instrumentation and DetectorsDark matterFOS: Physical scienceslcsh:AstrophysicsScintillatorWavelength shifter01 natural sciencesParticle detectorDEAPOptics0103 physical scienceslcsh:QB460-466lcsh:Nuclear and particle physics. Atomic energy. Radioactivity010306 general physicsEngineering (miscellaneous)PhysicsScintillation010308 nuclear & particles physicsbusiness.industryInstrumentation and Detectors (physics.ins-det)Scintillation counterlcsh:QC770-798businessEuropean Physical Journal C: Particles and Fields
researchProduct

Radiogenic backgrounds in the NEXT double beta decay experiment

2019

[EN] Natural radioactivity represents one of the main backgrounds in the search for neutrinoless double beta decay. Within the NEXT physics program, the radioactivity- induced backgrounds are measured with the NEXT-White detector. Data from 37.9 days of low-background operations at the Laboratorio Subterraneo de Canfranc with xenon depleted in Xe-136 are analyzed to derive a total background rate of (0.84 +/- 0.02) mHz above 1000 keV. The comparison of data samples with and without the use of the radon abatement system demonstrates that the contribution of airborne-Rn is negligible. A radiogenic background model is built upon the extensive radiopurity screening campaign conducted by the NEX…

Nuclear and High Energy PhysicsPhysical measurementsPhysics - Instrumentation and DetectorsDark Matter and Double Beta DecayDark matterFísica -- Mesuramentschemistry.chemical_elementFOS: Physical sciencesRadon7. Clean energy01 natural sciencesAtomicMathematical SciencesHigh Energy Physics - ExperimentNuclear physicsTECNOLOGIA ELECTRONICAHigh Energy Physics - Experiment (hep-ex)XenonParticle and Plasma PhysicsDouble beta decayDark matter and double beta decay (experiments)0103 physical sciencesDark Matter and Double Beta Decay (experiments)Dark Matterlcsh:Nuclear and particle physics. Atomic energy. RadioactivityNuclear010306 general physicsDouble Beta DecayNatural radioactivityMathematical PhysicsPhysicsQuantum PhysicsRadiogenic nuclide010308 nuclear & particles physicsDetectorMolecularDetectorsInstrumentation and Detectors (physics.ins-det)Nuclear & Particles PhysicschemistryPhysical Scienceslcsh:QC770-798Event (particle physics)
researchProduct