Search results for "QCD"
showing 10 items of 614 documents
Very Heavy Flavored Dibaryons
2020
We explore the possibility of very heavy dibaryons with three charm quarks and three beauty quarks, $bbbccc$, using a constituent model which should drive to the correct solution in the limit of hadrons made of heavy quarks. The six-body problem is treated rigorously, in particular taking into account the orbital, color and spin mixed-symmetry components of the wave function. Unlike a recent claim based on lattice QCD, no bound state is found below the lowest dissociation threshold.
Finite-size scaling of the quark condensate in quenched lattice QCD
1999
We confront the finite volume and small quark mass behaviour of the scalar condensate, determined numerically in quenched lattice QCD using Neuberger fermions, with predictions of quenched chiral perturbation theory. We find that quenched chiral perturbation theory describes the numerical data well, allowing us to extract the infinite volume, chiral limit scalar condensate, up to a multiplicative renormalization constant.
Theoretical study of YbOH173 to search for the nuclear magnetic quadrupole moment
2019
A $CP$-violating interaction of the nuclear magnetic quadrupole moment (MQM) with electrons in the ytterbium monohydroxide molecule $^{173}\mathrm{YbOH}$ is considered. Both the MQM of the $^{173}\mathrm{Yb}$ nucleus and the molecular interaction constant ${W}_{M}$ are estimated. Electron correlation effects are taken into account within the relativistic Fock-space coupled-cluster method. Results are interpreted in terms of the strength constants of $CP$-violating nuclear forces, neutron dipole moment (EDM), QCD vacuum angle $\ensuremath{\theta}$, quark EDMs, and chromo-EDMs.
Prospects for dilepton rates from lattice QCD
2015
We discuss the prospects of computing thermal dilepton rates from first principles lattice QCD. The focus lies in the determination of the meson vector-vector current spectral function to estimate the electrical conductivity, heavy quark diffusion and quarkonium dissociation. We review and compare recent results from continuum-extrapolated, quenched calculations, as well as dynamical two-flavor setups.
Nucleon matrix elements from lattice QCD with all-mode-averaging and a domain-decomposed solver: An exploratory study
2017
We study the performance of all-mode-averaging (AMA) when used in conjunction with a locally deflated SAP-preconditioned solver, determining how to optimize the local block sizes and number of deflation fields in order to minimize the computational cost for a given level of overall statistical accuracy. We find that AMA enables a reduction of the statistical error on nucleon charges by a factor of around two at the same cost when compared to the standard method. As a demonstration, we compute the axial, scalar and tensor charges of the nucleon in $N_f=2$ lattice QCD with non-perturbatively O(a)-improved Wilson quarks, using O(10,000) measurements to pursue the signal out to source-sink sepa…
Quantum loops in the resonance chiral theory: the vector form factor
2004
27 páginas, 7 figuras.-- arXiv:hep-ph/0407240v1
Lattice-constrained parametrizations of form factors for semileptonic and rare radiative B decays
1997
We describe the form factors for B to rho lepton neutrino and B to K* gamma decays with just two parameters and the two form factors for B to pi lepton neutrino with a further two or three parameters. The parametrizations are consistent with heavy quark symmetry, kinematic constraints and lattice results, which we use to determine the parameters. In addition, we test versions of the parametrizations consistent (or not) with light-cone sum rule scaling relations at q^2=0.
Lattice quark masses: a non-perturbative measurement
1998
We discuss the renormalization of different definitions of quark masses in the Wilson and the tree-level improved SW-Clover fermionic action. For the improved case we give the correct relationship between the quark mass and the hopping parameter. Using perturbative and non-perturbative renormalization constants, we extract quark masses in the $\MSbar$ scheme from Lattice QCD in the quenched approximation at $\beta=6.0$, $\beta=6.2$ and $\beta=6.4$ for both actions. We find: $\bar{m}^{\MSbar}(2 GeV)=5.7 \pm 0.1 \pm 0.8$ MeV, $m_s^{\MSbar}(2GeV)= 130 \pm 2 \pm 18 $ MeV and $m_c^{\MSbar}(2 GeV) = 1662\pm 30\pm 230$ MeV.
New results from lattice QCD: Non-perturbative renormalization and quark masses
1998
For the first time, we compute non-perturbatively, i.e. without lattice perturbation theory, the renormalization constants of two-fermion operators in the quenched approximation at $\beta=6.0$, 6.2 and 6.4 using the Wilson and the tree-level improved SW-Clover actions. We apply these renormalization constants to fully non-perturbatively estimate quark masses in the $\bar{MS}$ scheme from lattice simulations of both the hadron spectrum and the Axial Ward Identity in the quenched approximation. Some very preliminary unquenched Wilson results obtained from the gluon configurations generated by the T$\chi$L Collaboration at $\beta=5.6$ and $N_{f}=2$ are also discussed.
Theoretical determination of the hadronic (g-2) of the muon
2016
An approach is discussed on the determination of the leading order hadronic contribution to the muon anomaly, $a_\mu^{HAD}$, based entirely on theory. This method makes no use of $e^+ e^-$ annihilation data, a likely source of the current discrepancy between theory and experiment beyond the $3\, \sigma$ level. What this method requires is essentially knowledge of the first derivative of the vector current correlator at zero-momentum. In the heavy-quark sector this is obtained from the well known heavy quark expansion in perturbative QCD, leading to values of $a_\mu^{HAD}$ in the charm- and bottom-quark region which were fully confirmed by later lattice QCD (LQCD) results. In the light-quark…