Search results for "QD0241"
showing 4 items of 4 documents
The Histone Deacetylase Inhibitor JAHA Down-Regulates pERK and Global DNA Methylation in MDA-MB231 Breast Cancer Cells
2015
The histone deacetylase inhibitor N-1-(ferrocenyl)-N-8-hydroxyoctanediamide (JAHA) down-regulates extracellular-signal-regulated kinase (ERK) and its activated form in triple-negative MDA-MB231 breast cancer cells after 18 h and up to 30 h of treatment, and to a lesser extent AKT and phospho-AKT after 30 h and up to 48 h of treatment. Also, DNA methyltransferase 1 (DNMT1), 3b and, to a lesser extent, 3a, downstream ERK targets, were down-regulated already at 18 h with an increase up to 48 h of exposure. Methylation-sensitive restriction arbitrarily-primed (MeSAP) polymerase chain reaction (PCR) analysis confirmed the ability of JAHA to induce genome-wide DNA hypomethylation at 48 h of expos…
Cytotoxicity of the Urokinase-Plasminogen Activator Inhibitor Carbamimidothioic Acid (4-Boronophenyl) Methyl Ester Hydrobromide (BC-11) on Triple-Neg…
2015
BC-11 is an easily synthesized simple thiouronium-substituted phenylboronic acid, which has been shown to be cytotoxic on triple negative MDA-MB231 breast cancer cells by inducing a perturbation of cell cycle when administered at a concentration equal to its ED50 at 72 h (117 μM). Exposure of cells to BC-11, either pre-absorbed with a soluble preparation of the N-terminal fragment of urokinase-plasminogen activator (uPa), or in co-treatment with two different EGFR inhibitors, indicated that: (i) BC-11 acts via binding to the N-terminus of the enzyme where uPa- and EGF receptor-recognizing sites are present, thereby abrogating the growth-sustaining effect resulting from receptor binding
Biological Effect of a Hybrid Anticancer Agent Based on Kinase and Histone Deacetylase Inhibitors on Triple-Negative (MDA-MB231) Breast Cancer Cells
2016
We examined the effects of the histone deacetylase inhibitor (HDACi) suberoylanilide\ud hydroxamic acid (SAHA) combined with the vascular endothelial growth factor receptor-1/2 inhibitor\ud (3Z)-5-hydroxy-3-(1H-pyrrol-2-ylmethylidene)-2,3-dihydro-1H-indol-2-one on MDA-MB-231 breast\ud cancer cells (triple-negative) in the form of both a cocktail of the separate compounds and a chemically\ud synthesized hybrid (N-hydroxy-N'-[(3Z)-2-oxo-3-(1H-pyrrol-2-ylmethylidene)-2,3-dihydro-1H-indol-\ud 5-yl]octanediamide). Comparative flow cytometric and Western blot analyses were performed on\ud cocktail- and hybrid-treated cells to evaluate cell cycle distribution, autophagy/apoptosis modulation,\ud an…
Targeting Cavity-Creating p53 Cancer Mutations with Small-Molecule Stabilizers: the Y220X Paradigm
2020
We have previously shown that the thermolabile, cavity-creating p53 cancer mutant Y220C can be reactivated by small-molecule stabilizers. In our ongoing efforts to unearth druggable variants of the p53 mutome, we have now analyzed the effects of other cancer-associated mutations at codon 220 on the structure, stability, and dynamics of the p53 DNA-binding domain (DBD). We found that the oncogenic Y220H, Y220N, and Y220S mutations are also highly destabilizing, suggesting that they are largely unfolded under physiological conditions. A high-resolution crystal structure of the Y220S mutant DBD revealed a mutation-induced surface crevice similar to that of Y220C, whereas the corresponding pock…