Search results for "QSAR"

showing 10 items of 48 documents

Molecular basis of the interaction of novel tributyltin(IV) 2/4-[(E)-2-(aryl)-1-diazenyl] benzoates endowed with an improved cytotoxic profile: Synth…

2010

A series of tributyltin(IV) complexes based on 2/4-[(E)-2-(aryl)-1-diazenyl]benzoate ligands was synthesized, wherein the position of the carboxylate and aryl substituents (methyl, tert-butyl and hydroxyl) varies. The complexes, Bu(3)SnL(1-4)H (1-4), have been structurally characterized by elemental analysis and IR, NMR ((1)H, (13)C, and (119)Sn) and (119)Sn Mossbauer spectroscopy. All have a tetrahedral geometry in solution and a trigonal bipyramidal geometry in the solid-state, except for Bu(3)SnL(4)H (4) that was ascertained to have tetrahedral coordination by X-ray crystallography. Cytotoxicity studies were carried out on human tumor cell lines A498 (renal cancer), EVSA-T (mammary cance…

Models MolecularQuantitative structure–activity relationshipMagnetic Resonance SpectroscopyStereochemistryCell SurvivalANTITUMOR-ACTIVITYHydrophobicityQuantitative Structure-Activity RelationshipAntineoplastic AgentsCrystallography X-RayBiochemistryBenzoatesVALIDATIONInorganic Chemistrychemistry.chemical_compoundAnti-cancer drugCell Line TumorOrganotin CompoundsTRIORGANOTIN(IV) COMPLEXESHumansCRYSTAL-STRUCTURESCarboxylateOPTIMIZATIONArylazobenzoateSpectroscopyX-ray crystallographyMolecular StructureQSARArylTetrahedral molecular geometryNuclear magnetic resonance spectroscopyBenzoatesTributyltin(IV) compoundTrigonal bipyramidal molecular geometryMOSQUITO LARVAEchemistryCELL-DEATHDocking (molecular)Settore CHIM/03 - Chimica Generale E InorganicaDocking studies RIBONUCLEOTIDE REDUCTASE INHIBITORSEMIEMPIRICAL METHODSTrialkyltin CompoundsCell lineAEDES-AEGYPTI
researchProduct

A3 adenosine receptor: Homology modeling and 3D-QSAR studies

2012

Adenosine receptors (AR) belong to the superfamily of G-protein-coupled receptors (GPCRs). They are divided into four subtypes (A1, A2A, A2B, and A3) [1], and can be distinguished on the basis of their distinct molecular structures, distinct tissues distribution, and selectivity for adenosine analogs [2,3]. The hA3R, the most recently identified adenosine receptor, is involved in a variety of intracellular signaling pathways and physiological functions [4]. Expression of A3R was reported to be elevated in cancerous tissues [5], and A3 antagonists have been proposed for therapeutic treatments of cancer. The recent literature availability of crystal structure of hA2A adenosine receptor (PDB c…

Models MolecularQuantitative structure–activity relationshipReceptor Adenosine A2AAdenosine A3 Receptor AntagonistsQuantitative Structure-Activity RelationshipComputational biologyBiologyPharmacologyDrug DiscoveryMolecular dynamics simulationMaterials ChemistrymedicineHumansAmino Acid SequenceHomology modelingPhysical and Theoretical ChemistryReceptorA3 INHIBITORS HOMOLOGY MODELING 3D-QSARSpectroscopyG protein-coupled receptorA3 ReceptorBinding SitesTriazinesReceptor Adenosine A3Intracellular Signaling Peptides and ProteinsTriazolesA3 ADENOSINE RECEPTORComputer Graphics and Computer-Aided DesignAdenosine receptorAdenosineSettore CHIM/08 - Chimica FarmaceuticaPharmacophoresHomology modellingPharmacophoreProtein Bindingmedicine.drug
researchProduct

IKK-β inhibitors: An analysis of drug–receptor interaction by using Molecular Docking and Pharmacophore 3D-QSAR approaches

2010

Abstract The IKK kinases family represents a thrilling area of research because of its importance in regulating the activity of NF-kB transcription factors. The discovery of the central role played by IKK-β in the activation of transcription in response to apoptotic or inflammatory stimuli allowed to considerate its modulation as a promising tool for the treatment of chronic inflammation and cancer. To date, several IKK-β inhibitors have been discovered and tested. In this work, an analysis of the interactions between different classes of inhibitors and their biological target was performed, through the application of Molecular Docking and Pharmacophore/3D-QSAR approaches to a set of 141 in…

Models MolecularQuantitative structure–activity relationshipReceptors DrugMolecular Sequence DataQuantitative Structure-Activity RelationshipIκB kinaseComputational biologyPharmacologyBiologyMaterials ChemistryHumansAmino Acid SequenceNF-kBHomology modelingPhysical and Theoretical ChemistryProtein Kinase InhibitorsTranscription factorSpectroscopyIKK-betaIKK-beta inhibitors Molecular Docking Pharmacophore 3D-QSAR approachesBinding SitesPharmacophoreKinaseHomology modelingSettore CHIM/08 - Chimica FarmaceuticaComputer Graphics and Computer-Aided DesignI-kappa B KinaseMolecular DockingStructural Homology ProteinBiological targetDrug receptorPharmacophoreJournal of Molecular Graphics and Modelling
researchProduct

An in vitro comparative assessment with a series of new triphenyltin(IV) 2-/4-[(E)-2-(aryl)-1-diazenyl]benzoates endowed with anticancer activities: …

2012

Four new triphenyltin(IV) complexes of composition Ph 3SnLH (where LH = 2-/4-[(E)-2-(aryl)-1-diazenyl]benzoate) (1-4) were synthesized and characterized by spectroscopic ( 1H, 13C and 119Sn NMR, IR, 119Sn Mössbauer) techniques in combination with elemental analysis. The 119Sn NMR spectroscopic data indicate a tetrahedral coordination geometry in non-coordinating solvents. The crystal structures of three complexes, Ph 3SnL 1H (1), Ph 3SnL 3H (3), Ph 3SnL 4H (4), were determined. All display an essentially tetrahedral geometry with angles ranging from 93.50(8) to 124.5(2)°; 119Sn Mössbauer spectral data support this assignment. The cytotoxicity studies were performed with complexes 1-4, along…

Models MolecularTriphenyltin(IV) benzoatesCell SurvivalStereochemistryMolecular ConformationQuantitative Structure-Activity RelationshipAntineoplastic AgentsStereoisomerismCrystal structureCrystallography X-RayBenzoatesBiochemistryInorganic ChemistryAnti-cancer drugInhibitory Concentration 50chemistry.chemical_compoundCell Line TumorOrganotin CompoundsHumansCytotoxicityCoordination geometryQSARHydrogen bondArylTetrahedral molecular geometryHydrogen BondingStereoisomerismBenzoateschemistrySettore CHIM/03 - Chimica Generale E InorganicaCell lineTriphenyltin(IV) 2-/4-[(E)-2-(aryl)-1-diazenyl]benzoateJournal of Inorganic Biochemistry
researchProduct

Understanding and Controlling Food Protein Structure and Function in Foods: Perspectives from Experiments and Computer Simulations

2020

The structure and interactions of proteins play a critical role in determining the quality attributes of many foods, beverages, and pharmaceutical products. Incorporating a multiscale understanding of the structure–function relationships of proteins can provide greater insight into, and control of, the relevant processes at play. Combining data from experimental measurements, human sensory panels, and computer simulations through machine learning allows the construction of statistical models relating nanoscale properties of proteins to the physicochemical properties, physiological outcomes, and tastes of foods. This review highlights several examples of advanced computer simulations at mol…

MultiscaleInterface interactionsComputer scienceIn silicorare-event method02 engineering and technologyMolecular dynamics01 natural sciencesconstant-pH simulationArticleStructure-Activity RelationshipGPCRruokafoods0103 physical sciencesComputer Simulationcomputer simulationssimulointiravintoaineetProtein-sugar interactionsConstant pH simulationfood proteintilastolliset mallit2. Zero hungerMolecular interactionsCoarse graining010304 chemical physicsQSARFood proteinmolecular dynamicRare-event methodsexperiments021001 nanoscience & nanotechnologyToolboxfysikaaliset ominaisuudetkemialliset ominaisuudetStructure and functionsimulation food carbohydrates pHFoodcoarse grainingmolecular interactionEmulsionsDietary ProteinsproteiinitBiochemical engineeringmaku (aineen ominaisuudet)0210 nano-technologyfysiologiset vaikutuksetFood ScienceAnnual Review of Food Science and Technology
researchProduct

3D-QSAR pharmacophore modeling and in silico screening of new Bcl-xl inhibitors.

2010

Bcl-2 proteins family members play several roles in tumoral proliferation: they inhibit proapoptotic activity during oncogenesis, support tumor cells survival, induce chemoresistance. The discovery of new small inhibitors of Bcl-xl represents a new frontier for cancer treatment. In this study, a 3D-QSAR pharmacophore model was developed, based on 42 biarylacylsulfonamides, and used to understand the structural factors affecting the inhibitory potency of these derivatives. Aromatic, negative charge, and hydrogen bond acceptor effects contribute to the inhibitory activity. The model was then employed as 3D search query to screen ZINC drug-like database in order to select new scaffolds. Finall…

PharmacologyModels MolecularVirtual screeningQuantitative structure–activity relationshipTertiary amineMolecular modelChemistryIn silicoOrganic ChemistryMolecular Conformationbcl-X ProteinQuantitative Structure-Activity RelationshipGeneral MedicineSettore CHIM/08 - Chimica FarmaceuticaBiochemistryIn vivoDocking (molecular)Drug Discovery3D-QSAR Pharmacophore Modeling In Silico Screening Bcl-xl InhibitorsPharmacophoreEuropean journal of medicinal chemistry
researchProduct

PCA and QSAR/QSPR used in combination to predict the drugs mechanism of action. An application to the NCI ACAM Database

2008

QSAR PCA NCI ACAM DatabaseSettore CHIM/08 - Chimica Farmaceutica
researchProduct

Aktywność biologiczna a struktura elektronowa pochodnych 1,3,4- tiadiazoli

2017

Przedmiotem badania była próba znalezienia korelacji między aktywnością biologiczną i właściwościami elektronowymi układów opartych na pochodnych tiadiazolu. Aktywność biologiczna związku chemicznego związana jest z jego cechami fizykochemicznymi. Jednym z najbardziej użytecznych parametrów w przewidywaniu aktywności biologicznej danej substancji, a także prognozowaniu o jej aktywności toksycznej jest lipofilowość, która stanowi ważny dyskryptor wykorzystywany w projektowaniu nowych leków oraz w ocenie aktywności substancji leczniczych już istniejących na rynku farmaceutycznym.Poszukiwanie korelacji pomiędzy strukturą chemiczną związku i właściwościami a aktywnością biologiczną stanowi prze…

QSARizomery strukturalnedyskryptorylipofilowośćzwiązki azowe
researchProduct

Study of relationships between the structure of aroma compounds and their retention-release between vapour phase and dairy gels

2010

An integrated approach physicochemistry and structures activity relationships has been carried out to study the aroma compounds retention-release phenomenon in a fat free dairy gel added with pectin. This study aimed to identify the molecular properties that govern this phenomenon assuming that modifying the structure leads automatically to a change in the retention-release of aroma compounds. For this purpose, we have determined the partition coefficients of 28 aroma compounds in water, in pectin gels and in dairy gels supplemented or not supplemented with pectin, at equilibrium conditions using the PRV method (Phase Ratio Variation). Then, we have performed a structure-retention relations…

Qsar/qsprAroma compoundComposé d’arômeCoefficient de partagePartition coefficientPectinHeadspaceRetention-releasePrvStructure-activity/structure-property relationships[SDV.AEN] Life Sciences [q-bio]/Food and NutritionRétention-libérationPectineDairy gelGel laitierRelations structure-activité/structure-propriété
researchProduct

Interaction between flavour compounds and beta-lactoglobulin: approach by NMR and 2D/3D-QSAR studies of ligands

2004

 author cannot archive publisher's version/PDF; International audience; Interactions between flavour compounds and beta-lactoglobulin (BLG) have been the subject of several studies, but there are no unanimous binding site explanations. In our laboratory, interactions between BLG, and two flavour compounds, beta-ionone and gamma-decalactone, were studied by 2D-NMR spectroscopy. It appears that several amino acids affected by binding of gamma-decalactone are buried in the central cavity, whereas binding of beta-ionone affects amino acids located in a groove near the outer surface of the protein. 2D/3D-QSAR studies were performed using QSAR+ module of Cerius2 and Catalyst. The QSAR equation pr…

Quantitative structure–activity relationshipAROMAMolecular modelStereochemistry01 natural sciences03 medical and health sciencesComputational chemistryMolecular descriptor[SDV.IDA]Life Sciences [q-bio]/Food engineeringFLAVOURBinding site030304 developmental biology3D-QSAR0303 health sciencesChemistryHydrogen bondLigand[ SDV.IDA ] Life Sciences [q-bio]/Food engineeringGeneral Chemistry[SDV.IDA] Life Sciences [q-bio]/Food engineeringAffinitiesBETA-LACTOGLOBULIN0104 chemical sciences010404 medicinal & biomolecular chemistry2D-QSAR2D-NMRTwo-dimensional nuclear magnetic resonance spectroscopyFood Science
researchProduct