Search results for "QUANTUM DISCORD"

showing 5 items of 55 documents

Geometric measures of quantum correlations: characterization, quantification, and comparison by distances and operations

2016

We investigate and compare three distinguished geometric measures of bipartite quantum correlations that have been recently introduced in the literature: the geometric discord, the measurement-induced geometric discord, and the discord of response, each one defined according to three contractive distances on the set of quantum states, namely the trace, Bures, and Hellinger distances. We establish a set of exact algebraic relations and inequalities between the different measures. In particular, we show that the geometric discord and the discord of response based on the Hellinger distance are easy to compute analytically for all quantum states whenever the reference subsystem is a qubit. Thes…

Statistics and ProbabilityQuantum discordQuantum PhysicsFOS: Physical sciencesGeneral Physics and AstronomyStatistical and Nonlinear PhysicsState (functional analysis)01 natural sciencesMeasure (mathematics)010305 fluids & plasmasQuantum stateModeling and SimulationQubit0103 physical sciencesStatistical physics[MATH]Mathematics [math]Quantum informationMathematical structureHellinger distanceQuantum Physics (quant-ph)010306 general physicsQCMathematical Physics
researchProduct

Why a Quantum Tool in Classical Contexts?

2012

Theoretical physicsQuantum discordQuantum probabilityQuantum dynamicsQuantum mechanicsQuantum processQuantum operationMethod of quantum characteristicsQuantum algorithmQuantum channelMathematicsQuantum Dynamics for Classical Systems
researchProduct

Dynamics and extraction of quantum discord in a multipartite open system

2011

We consider a multipartite system consisting of two noninteracting qubits each embedded in a single-mode leaky cavity, in turn connected to an external bosonic reservoir. Initially, we take the two qubits in an entangled state while the cavities and the reservoirs have zero photons. We investigate, in this six-partite quantum system, the transfer of quantum discord from the qubits to the cavities and reservoirs. We show that this transfer occurs also when the cavities are not entangled. Moreover, we discuss how quantum discord can be extracted from the cavities and transferred to distant systems by traveling leaking photons, using the input-output theory.

dynamics of quantum correlations; extraction of quantum correlations; Multipartite open quantum systems; Physics and Astronomy (miscellaneous)PhysicsQuantum PhysicsQuantum networkQuantum discordPhysics and Astronomy (miscellaneous)dynamics of quantum correlationCluster stateCavity quantum electrodynamicsPhysics::OpticsFOS: Physical sciencesMultipartite open quantum systems; dynamics of quantum correlations; extraction of quantum correlationsQuantum Physicsextraction of quantum correlationsSettore FIS/03 - Fisica Della MateriaMultipartite open quantum systemsQuantum technologyOpen quantum systemdynamics of quantum correlationsMultipartite open quantum systemQuantum mechanicsPhysics::Accelerator PhysicsW stateQuantum Physics (quant-ph)Quantum teleportation
researchProduct

Characterizing and Quantifying Frustration in Quantum Many-Body Systems

2011

We present a general scheme for the study of frustration in quantum systems. We introduce a universal measure of frustration for arbitrary quantum systems and we relate it to a class of entanglement monotones via an exact inequality. If all the (pure) ground states of a given Hamiltonian saturate the inequality, then the system is said to be inequality saturating. We introduce sufficient conditions for a quantum spin system to be inequality saturating and confirm them with extensive numerical tests. These conditions provide a generalization to the quantum domain of the Toulouse criteria for classical frustration-free systems. The models satisfying these conditions can be reasonably identifi…

frustrationmedia_common.quotation_subjectFOS: Physical sciencesGeneral Physics and AstronomyFrustrationQuantum capacityQuantum entanglement01 natural sciences010305 fluids & plasmasOpen quantum systemQuantum mechanics0103 physical sciencesQuantum operationStatistical physics010306 general physicsMathematical Physicsmedia_commonMathematicsQuantum PhysicsQuantum discordMathematical Physics (math-ph)Condensed Matter - Other Condensed MatterQuantum processQuantum algorithmCondensed Matter::Strongly Correlated ElectronsQuantum Physics (quant-ph)Other Condensed Matter (cond-mat.other)
researchProduct

Quantum Correlation Dynamics in Controlled Two-Coupled-Qubit Systems

2020

We study and compare the time evolutions of concurrence and quantum discord in a driven system of two interacting qubits prepared in a generic Werner state. The corresponding quantum dynamics is exactly treated and manifests the appearance and disappearance of entanglement. Our analytical treatment transparently unveils the physical reasons for the occurrence of such a phenomenon, relating it to the dynamical invariance of the X structure of the initial state. The quantum correlations which asymptotically emerge in the system are investigated in detail in terms of the time evolution of the fidelity of the initial Werner state.

quantum discordQuantum correlationQuantum dynamicsFOS: Physical sciencesGeneral Physics and Astronomylcsh:AstrophysicsQuantum entanglement01 natural sciencesArticle010305 fluids & plasmasQuantum mechanicslcsh:QB460-4660103 physical sciencesWerner statelcsh:Science010306 general physicsPhysicsQuantum discordQuantum PhysicsWerner stateTime evolutionConcurrenceQuantum Physicslcsh:QC1-999Qubitlcsh:Qsudden death of entanglementQuantum Physics (quant-ph)lcsh:Physics
researchProduct