Search results for "QUBIT"

showing 10 items of 279 documents

Debates with Small Transparent Quantum Verifiers

2014

We study a model where two opposing provers debate over the membership status of a given string in a language, trying to convince a weak verifier whose coins are visible to all. We show that the incorporation of just two qubits to an otherwise classical constant-space verifier raises the class of debatable languages from at most NP to the collection of all Turing-decidable languages (recursive languages). When the verifier is further constrained to make the correct decision with probability 1, the corresponding class goes up from the regular languages up to at least E.

Class (computer programming)Theoretical computer scienceComputer scienceProgramming languageString (computer science)0102 computer and information sciencescomputer.software_genre01 natural sciences010305 fluids & plasmasRegular language010201 computation theory & mathematicsQubit0103 physical sciencesQuantum finite automataQuantumcomputerZero errorQuantum computer
researchProduct

Optical d-level frequency-time-based cluster states

2019

Cluster states, a specific class of multi-partite entangled states, are of particular importance for quantum science, as such systems are equivalent to the realization of one-way (or measurement-based) quantum computers [1]. In this scheme, algorithms are implemented through high-fidelity measurements on the parties of the state [2]. While two-level (i.e. qubit) cluster states have been realized so far, increasing the number of particles to boost the computational resource comes at the price of significantly reduced coherence time and detection rates, as well as increased sensitivity to noise, restricting the realization of discrete cluster states to a record of eight qubits. In contrast, t…

Coherence timeComputer scienceQubitCluster (physics)Quantum information scienceTopologyRealization (systems)QuantumQuantum computerCoherence (physics)
researchProduct

Shuttling-Based Trapped-Ion Quantum Information Processing

2020

Moving trapped-ion qubits in a microstructured array of radiofrequency traps offers a route toward realizing scalable quantum processing nodes. Establishing such nodes, providing sufficient functionality to represent a building block for emerging quantum technologies, e.g., a quantum computer or quantum repeater, remains a formidable technological challenge. In this review, the authors present a holistic view on such an architecture, including the relevant components, their characterization, and their impact on the overall system performance. The authors present a hardware architecture based on a uniform linear segmented multilayer trap, controlled by a custom-made fast multichannel arbitra…

Computer Networks and CommunicationsComputer scienceFOS: Physical sciences.Arbitrary waveform generator7. Clean energy01 natural sciences010305 fluids & plasmas//purl.org/becyt/ford/1 [https]0103 physical sciencesElectronic engineeringWaveformddc:530Electrical and Electronic EngineeringPhysical and Theoretical Chemistry010306 general physicsQuantum information scienceQuantum computerHardware architectureQuantum PhysicsControl reconfiguration//purl.org/becyt/ford/1.3 [https]Condensed Matter PhysicsAtomic and Molecular Physics and OpticsElectronic Optical and Magnetic MaterialsQuantum technologyComputational Theory and MathematicsQubitQuantum Physics (quant-ph)
researchProduct

Robust entanglement preparation against noise by controlling spatial indistinguishability

2019

Initialization of composite quantum systems into highly entangled states is usually a must to allow their use for quantum technologies. However, the presence of unavoidable noise in the preparation stage makes the system state mixed, thus limiting the possibility of achieving this goal. Here we address this problem in the context of identical particle systems. We define the entanglement of formation for an arbitrary state of two identical qubits within the operational framework of spatially localized operations and classical communication (sLOCC). We then introduce an entropic measure of spatial indistinguishability under sLOCC as an information resource. We show that spatial indistinguisha…

Computer Networks and CommunicationsComputer scienceInitializationFOS: Physical sciencesContext (language use)Quantum entanglementNoise (electronics)Measure (mathematics)lcsh:QA75.5-76.95Settore FIS/03 - Fisica Della MateriaEntanglementComputer Science (miscellaneous)Statistical physicsQuantumQuantum PhysicsQuantum resourcesStatistical and Nonlinear PhysicsQuantum Physicslcsh:QC1-999Quantum technologyComputational Theory and MathematicsQubitOpen quantum systemlcsh:Electronic computers. Computer scienceQuantum Physics (quant-ph)lcsh:PhysicsQuantum indistinguishability
researchProduct

Energy-efficient quantum computing

2016

In the near future, a major challenge in quantum computing is to scale up robust qubit prototypes to practical problem sizes and to implement comprehensive error correction for computational precision. Due to inevitable quantum uncertainties in resonant control pulses, increasing the precision of quantum gates comes with the expense of increased energy consumption. Consequently, the power dissipated in the vicinity of the processor in a well-working large-scale quantum computer seems unacceptably large in typical systems requiring low operation temperatures. Here, we introduce a method for qubit driving and show that it serves to decrease the single-qubit gate error without increasing the a…

Computer Networks and CommunicationsComputer scienceQC1-999FOS: Physical sciences01 natural sciences010305 fluids & plasmasEntanglementComputer Science::Emerging TechnologiesQuantum gateenergy consumption0103 physical sciencesComputer Science (miscellaneous)Electronic engineering010306 general physicsQuantumQuantum computerQuantum PhysicsPhysicskvanttitietokoneetStatistical and Nonlinear PhysicsenergiankulutusQA75.5-76.95Energy consumptionPower (physics)Computational Theory and MathematicsElectronic computers. Computer scienceQubitlämmön johtuminenQubitQuantum gatesQuantum Physics (quant-ph)Error detection and correctionEfficient energy use
researchProduct

Categories, Quantum Computing, and Swarm Robotics: A Case Study

2022

The swarms of robots are examples of artificial collective intelligence, with simple individual autonomous behavior and emerging swarm effect to accomplish even complex tasks. Modeling approaches for robotic swarm development is one of the main challenges in this field of research. Here, we present a robot-instantiated theoretical framework and a quantitative worked-out example. Aiming to build up a general model, we first sketch a diagrammatic classification of swarms relating ideal swarms to existing implementations, inspired by category theory. Then, we propose a matrix representation to relate local and global behaviors in a swarm, with diagonal sub-matrices describing individual featur…

Computer Science::RoboticsSwarm roboticsswarm robotics; quantum computing; 4-qubit system; matrix representation; colimitGeneral MathematicsColimitQA1-939Computer Science (miscellaneous)4-qubit systemQuantum computingMatrix representationEngineering (miscellaneous)MathematicsMathematics
researchProduct

Quantifying, characterizing, and controlling information flow in ultracold atomic gases

2011

We study quantum information flow in a model comprising of an impurity qubit immersed in a Bose-Einstein condensed reservoir. We demonstrate how information flux between the qubit and the condensate can be manipulated by engineering the ultracold reservoir within experimentally realistic limits. We place a particular emphasis on non-Markovian dynamics, characterized by a reversed flow of information from the background gas to the qubit and identify a controllable crossover between Markovian and non-Markovian dynamics in the parameter space of the model.

Condensed Matter::Quantum GasesPhysicsQuantum PhysicsFlux qubitFOS: Physical sciencesQuantum simulator-One-way quantum computerAtomic and Molecular Physics and OpticsPhase qubitOpen quantum systemQuantum Gases (cond-mat.quant-gas)QubitBECs entanglement quantum information theory open quantum systemsStatistical physicsQuantum informationAtomic physicsCondensed Matter - Quantum GasesQuantum Physics (quant-ph)Trapped ion quantum computerPhysical Review A
researchProduct

2-qubit quantum state transfer in spin chains and cold atoms with weak links

2017

In this paper we discuss the implementation of 2-qubit quantum state transfer (QST) in inhomogeneous spin chains where the sender and the receiver blocks are coupled through the bulk channel via weak links. The fidelity and the typical timescale of the QST are discussed as a function of the parameters of the weak links. Given the possibility of implementing with cold atoms in optical lattices a variety of condensed matter systems, including spin systems, we also discuss the possible implementation of the discussed 2-qubit QST with cold gases with weak links, together with a discussion of the applications and limitations of the presented results.

Condensed Matter::Quantum GasesPhysicsQuantum physiccondensed matterPhysics and Astronomy (miscellaneous)Quantum gasQuantum physicscold atomquantum gaseFunction (mathematics)cold atomsquantum state transfer01 natural sciences010305 fluids & plasmas3. Good healthQubitQuantum mechanics0103 physical sciencesQuantum state transfercold atoms; condensed matter; quantum gases; Quantum physics; quantum state transfer; Physics and Astronomy (miscellaneous)quantum gases010306 general physicsSpin-½
researchProduct

Trapped Rydberg ions: A new platform for quantum information processing

2020

Abstract In this chapter, we present an overview of experiments with trapped Rydberg ions and outline the advantages and challenges of developing applications of this new platform for quantum computing, sensing, and simulation. Trapped Rydberg ions feature several important properties, unique in their combination: they are tightly bound in a harmonic potential of a Paul trap, in which their internal and external degrees of freedom can be controlled in a precise fashion. High fidelity state preparation of both internal and motional states of the ions has been demonstrated, and the internal states have been employed to store and manipulate qubit information. Furthermore, strong dipolar intera…

Condensed Matter::Quantum GasesPhysicsQuantum simulator02 engineering and technology021001 nanoscience & nanotechnology01 natural sciencesIonsymbols.namesakeNormal modePolarizabilityQubit0103 physical sciencesRydberg formulasymbolsPhysics::Atomic PhysicsIon trapAtomic physics010306 general physics0210 nano-technologyQuantum computer
researchProduct

Magnetic exchange between metal ions with unquenched orbital angular momenta: basic concepts and relevance to molecular magnetism

2010

This review article is a first attempt to give a systematic and comprehensive description (in the framework of the unified theoretical approach) of the exchange interactions in polynuclear systems based on orbitally degenerate metal ions in the context of their relevance to the modern molecular magnetism. Interest in these systems is related to the fundamental problems of magnetism and at the same time steered by a number of impressive potential applications of molecular magnets, like high-density memory storage units, nanoscale qubits, spintronics and photoswitchable devices. In the presence of orbital degeneracy, the conventional spin Hamiltonian (Heisenberg–Dirac–van Vleck model) becomes…

Condensed matter physicsSpintronicsChemistryMagnetismExchange interactionDegenerate energy levelsSpin–orbit interactionTheoretical physicssymbols.namesakeMagnetic anisotropyQubitsymbolsPhysical and Theoretical ChemistryHamiltonian (quantum mechanics)International Reviews in Physical Chemistry
researchProduct