Search results for "QUBIT"
showing 10 items of 279 documents
Debates with Small Transparent Quantum Verifiers
2014
We study a model where two opposing provers debate over the membership status of a given string in a language, trying to convince a weak verifier whose coins are visible to all. We show that the incorporation of just two qubits to an otherwise classical constant-space verifier raises the class of debatable languages from at most NP to the collection of all Turing-decidable languages (recursive languages). When the verifier is further constrained to make the correct decision with probability 1, the corresponding class goes up from the regular languages up to at least E.
Optical d-level frequency-time-based cluster states
2019
Cluster states, a specific class of multi-partite entangled states, are of particular importance for quantum science, as such systems are equivalent to the realization of one-way (or measurement-based) quantum computers [1]. In this scheme, algorithms are implemented through high-fidelity measurements on the parties of the state [2]. While two-level (i.e. qubit) cluster states have been realized so far, increasing the number of particles to boost the computational resource comes at the price of significantly reduced coherence time and detection rates, as well as increased sensitivity to noise, restricting the realization of discrete cluster states to a record of eight qubits. In contrast, t…
Shuttling-Based Trapped-Ion Quantum Information Processing
2020
Moving trapped-ion qubits in a microstructured array of radiofrequency traps offers a route toward realizing scalable quantum processing nodes. Establishing such nodes, providing sufficient functionality to represent a building block for emerging quantum technologies, e.g., a quantum computer or quantum repeater, remains a formidable technological challenge. In this review, the authors present a holistic view on such an architecture, including the relevant components, their characterization, and their impact on the overall system performance. The authors present a hardware architecture based on a uniform linear segmented multilayer trap, controlled by a custom-made fast multichannel arbitra…
Robust entanglement preparation against noise by controlling spatial indistinguishability
2019
Initialization of composite quantum systems into highly entangled states is usually a must to allow their use for quantum technologies. However, the presence of unavoidable noise in the preparation stage makes the system state mixed, thus limiting the possibility of achieving this goal. Here we address this problem in the context of identical particle systems. We define the entanglement of formation for an arbitrary state of two identical qubits within the operational framework of spatially localized operations and classical communication (sLOCC). We then introduce an entropic measure of spatial indistinguishability under sLOCC as an information resource. We show that spatial indistinguisha…
Energy-efficient quantum computing
2016
In the near future, a major challenge in quantum computing is to scale up robust qubit prototypes to practical problem sizes and to implement comprehensive error correction for computational precision. Due to inevitable quantum uncertainties in resonant control pulses, increasing the precision of quantum gates comes with the expense of increased energy consumption. Consequently, the power dissipated in the vicinity of the processor in a well-working large-scale quantum computer seems unacceptably large in typical systems requiring low operation temperatures. Here, we introduce a method for qubit driving and show that it serves to decrease the single-qubit gate error without increasing the a…
Categories, Quantum Computing, and Swarm Robotics: A Case Study
2022
The swarms of robots are examples of artificial collective intelligence, with simple individual autonomous behavior and emerging swarm effect to accomplish even complex tasks. Modeling approaches for robotic swarm development is one of the main challenges in this field of research. Here, we present a robot-instantiated theoretical framework and a quantitative worked-out example. Aiming to build up a general model, we first sketch a diagrammatic classification of swarms relating ideal swarms to existing implementations, inspired by category theory. Then, we propose a matrix representation to relate local and global behaviors in a swarm, with diagonal sub-matrices describing individual featur…
Quantifying, characterizing, and controlling information flow in ultracold atomic gases
2011
We study quantum information flow in a model comprising of an impurity qubit immersed in a Bose-Einstein condensed reservoir. We demonstrate how information flux between the qubit and the condensate can be manipulated by engineering the ultracold reservoir within experimentally realistic limits. We place a particular emphasis on non-Markovian dynamics, characterized by a reversed flow of information from the background gas to the qubit and identify a controllable crossover between Markovian and non-Markovian dynamics in the parameter space of the model.
2-qubit quantum state transfer in spin chains and cold atoms with weak links
2017
In this paper we discuss the implementation of 2-qubit quantum state transfer (QST) in inhomogeneous spin chains where the sender and the receiver blocks are coupled through the bulk channel via weak links. The fidelity and the typical timescale of the QST are discussed as a function of the parameters of the weak links. Given the possibility of implementing with cold atoms in optical lattices a variety of condensed matter systems, including spin systems, we also discuss the possible implementation of the discussed 2-qubit QST with cold gases with weak links, together with a discussion of the applications and limitations of the presented results.
Trapped Rydberg ions: A new platform for quantum information processing
2020
Abstract In this chapter, we present an overview of experiments with trapped Rydberg ions and outline the advantages and challenges of developing applications of this new platform for quantum computing, sensing, and simulation. Trapped Rydberg ions feature several important properties, unique in their combination: they are tightly bound in a harmonic potential of a Paul trap, in which their internal and external degrees of freedom can be controlled in a precise fashion. High fidelity state preparation of both internal and motional states of the ions has been demonstrated, and the internal states have been employed to store and manipulate qubit information. Furthermore, strong dipolar intera…
Magnetic exchange between metal ions with unquenched orbital angular momenta: basic concepts and relevance to molecular magnetism
2010
This review article is a first attempt to give a systematic and comprehensive description (in the framework of the unified theoretical approach) of the exchange interactions in polynuclear systems based on orbitally degenerate metal ions in the context of their relevance to the modern molecular magnetism. Interest in these systems is related to the fundamental problems of magnetism and at the same time steered by a number of impressive potential applications of molecular magnets, like high-density memory storage units, nanoscale qubits, spintronics and photoswitchable devices. In the presence of orbital degeneracy, the conventional spin Hamiltonian (Heisenberg–Dirac–van Vleck model) becomes…