Search results for "Quadruplex"

showing 10 items of 104 documents

Synthesis, characterization and DNA binding studies of potential G4 stabilizer metal complexes

2012

Settore CHIM/03 - Chimica Generale E InorganicaDNA G4 quadruplexSettore CHIM/08 - Chimica Farmaceutica
researchProduct

The Interaction of Small Molecules with Biomolecules

2014

The binding of small molecules with biological targets is associated to interesting chemical and biological properties of the resulting supramolecular systems. We have recently reported on the synthesis and characterization of cationic first row transition metal complexes and the study of their DNA binding properties, in aqueous solutions at neutral pH, essentially investigated by viscosimetry and spectroscopic techniques such as circular dichroism, absorption and fluorescence in the UV-visible wavelength range. Of course, such procedure cannot furnish atomic level details of the molecule-DNA interaction. Computational Chemistry may provide support for the interpretation of experimental dat…

Settore CHIM/03 - Chimica Generale E Inorganicatransition metal complexes DNA binding properties Molecular Dynamics G-quadruplexSettore CHIM/08 - Chimica Farmaceutica
researchProduct

Visualization of RNA-Quadruplexes in Live Cells

2015

Visualization of DNA and RNA quadruplex formation in human cells was demonstrated recently with different quadruplex-specific antibodies. Despite the significant interest in these immunodetection approaches, dynamic detection of quadruplex in live cells remains elusive. Here, we report on NaphthoTASQ (N-TASQ), a next-generation quadruplex ligand that acts as a multiphoton turn-on fluorescent probe. Single-step incubation of human and mouse cells with N-TASQ enables the direct detection of RNA-quadruplexes in untreated cells (no fixation, permeabilization or mounting steps), thus offering a unique, unbiased visualization of quadruplexes in live cells.

Static ElectricityMelanoma ExperimentalLigands010402 general chemistryG-quadruplex01 natural sciencesBiochemistryCatalysisMice03 medical and health scienceschemistry.chemical_compoundColloid and Surface ChemistryBiomimeticsCationsCell Line TumorFluorescence Resonance Energy TransferAnimalsHumans[CHIM]Chemical Sciences[SDV.BBM]Life Sciences [q-bio]/Biochemistry Molecular Biologyheterocyclic compoundsComputingMilieux_MISCELLANEOUSChelating AgentsFluorescent Dyes030304 developmental biologyPhotons[SDV.GEN]Life Sciences [q-bio]/Genetics0303 health sciencesbiologyChemistryRNADNAGeneral ChemistryFluorescenceMolecular biology3. Good health0104 chemical sciencesCell biologyVisualizationG-QuadruplexesFörster resonance energy transferMicroscopy FluorescenceCell cultureMCF-7 Cellsbiology.proteinRNAAntibodyDNAJournal of the American Chemical Society
researchProduct

Molecular recognition of naphthalene diimide ligands by telomeric quadruplex-DNA: the importance of the protonation state and mediated hydrogen bonds.

2016

In depth Monte Carlo conformational scans in combination with molecular dynamics (MD) simulations and electronic structure calculations were applied in order to study the molecular recognition process between tetrasubstituted naphthalene diimide (ND) guests and G-quadruplex (G4) DNA receptors. ND guests are a promising class of telomere stabilizers due to which they are used in novel anticancer therapeutics. Though several ND guests have been studied experimentally in the past, the protonation state under physiological conditions is still unclear. Based on chemical intuition, in the case of N-methyl-piperazine substitution, different protonation states are possible and might play a crucial …

StereochemistryGeneral Physics and AstronomyProtonationLigandElectronic structureNaphthalenes010402 general chemistryG-quadruplexImidesLigands01 natural sciencesMolecular dynamicsPhysics and Astronomy (all)Molecular recognitionThermodynamicG-QuadruplexeImidePhysical and Theoretical Chemistry010405 organic chemistryChemistryHydrogen bondHydrogen BondingTelomereElectrostaticsAcceptor0104 chemical sciencesG-QuadruplexesCrystallographySettore CHIM/03 - Chimica Generale E InorganicaThermodynamicsProtonProtonsNaphthalenePhysical chemistry chemical physics : PCCP
researchProduct

Multitasking Water-Soluble Synthetic G-Quartets: From Preferential RNA-Quadruplex Interaction to Biocatalytic Activity

2013

Natural G-quartets, a cyclic and coplanar array of four guanine res- idues held together through a Watson- Crick/Hoogsteen hydrogen-bond net- work, have received recently much at- tention due to their involvement in G- quadruplex DNA, an alternative higher-order DNA structure strongly suspected to play important roles in key cellular events. Besides this, syn- thetic G-quartets (SQ), which artificial- ly mimic native G-quartets, have also been widely studied for their involve- ment in nanotechnological applications (i.e., nanowires, artificial ion channels, etc.). In contrast, intramolecular syn- thetic G-quartets (iSQ), also named template-assembled synthetic G-quar- tets (TASQ), have been…

StereochemistryGuanineSupramolecular chemistryDeoxyribozyme010402 general chemistryG-QuartetsG-quadruplex01 natural sciencesCatalysischemistry.chemical_compound[CHIM]Chemical SciencesComputingMilieux_MISCELLANEOUS010405 organic chemistryOrganic ChemistryWaterRNADNAGeneral Chemistry0104 chemical sciencesG-QuadruplexeschemistryIntramolecular forceBiocatalysisHeminRNAOxidation-ReductionDNA
researchProduct

Antiproliferative properties and g-quadruplex-binding of symmetrical naphtho[1,2-b:8,7-b’]dithiophene derivatives

2021

Background: G-quadruplex (G4) forming sequences are recurrent in telomeres and promoter regions of several protooncogenes. In normal cells, the transient arrangements of DNA in G-tetrads may regulate replication, transcription, and translation processes. Tumors are characterized by uncontrolled cell growth and tissue invasiveness and some of them are possibly mediated by gene expression involving G-quadruplexes. The stabilization of G-quadruplex sequences with small molecules is considered a promising strategy in anticancer targeted therapy. Methods: Molecular virtual screening allowed us identifying novel symmetric bifunctionalized naphtho[1,2-b:8,7-b’]dithiophene ligands as interesting ca…

StereochemistryPharmaceutical ScienceAntineoplastic AgentsNaphthols010402 general chemistryG-quadruplex01 natural sciencesArticleAnalytical ChemistryHeLaProto-Oncogene Proteins c-mycchemistry.chemical_compoundSynthesisQD241-441Transcription (biology)H-TeloG-QuadruplexDrug DiscoveryC-MYCHumansheterocyclic compoundsPhysical and Theoretical ChemistryAntiproliferative effect; C-MYC; G-Quadruplex; H-Telo; Molecular docking; Planar heterocyclic scaffold; SynthesisCell ProliferationAntiproliferative effectVirtual screeningbiology010405 organic chemistryCell growthChemistryCytotoxinsOrganic Chemistrybiology.organism_classificationSmall moleculeSettore CHIM/08 - Chimica FarmaceuticaIn vitro0104 chemical sciencesG-QuadruplexesPlanar heterocyclic scaffoldChemistry (miscellaneous)Settore CHIM/03 - Chimica Generale E InorganicaMolecular dockingMolecular MedicineDNAHeLa Cells
researchProduct

Water-soluble isoindolo[2,1-a]quinoxalin-6-imines: In vitro antiproliferative activity and molecular mechanism(s) of action

2015

Abstract Water-soluble isoindoloquinoxalin (IIQ) imines and the corresponding acetates were conveniently prepared from the key intermediates 2-(2′-aminophenyl)-2H-isoindole-1-carbonitriles obtained by a Strecker reaction between substituted 1,2-dicarbaldehydes and 1,2-phenylenediamines. Both series were screened by the National Cancer Institute (Bethesda, MD) and showed potent antiproliferative activity against a panel of 60 human tumor cell lines. Several of the novel compounds showed GI50 values at a nanomolar level on the majority of the tested cell lines. Among IIQ derivatives, methoxy substituents at positions 3 and 8 or/and 9 were especially effective in impairing cell cycle progressi…

StereochemistryStrecker amino acid synthesisAntineoplastic AgentsApoptosisIsoindolo[21-a]quinoxalin-6-imineTopoisomerase I inhibitorsTopoisomerase-I InhibitorMicrotubulesTubulinCell Line TumorQuinoxalinesDrug DiscoveryHumansCytotoxic T cellCell ProliferationPharmacologyTopoisomerase I inhibitorChemistryAntitubulin agents; G-quadruplex interaction; Isoindolo[2; 1-a]quinoxalin-6-imines; Topoisomerase I inhibitors; Drug Discovery3003 Pharmaceutical Science; Organic Chemistry; PharmacologyAntitubulin agentsDrug Discovery3003 Pharmaceutical ScienceCell CycleOrganic ChemistryWaterGeneral MedicineSettore CHIM/08 - Chimica FarmaceuticaIn vitroTelomereAntitubulin agentAntitubulin agents; G-quadruplex interaction; Isoindolo[21-a]quinoxalin-6-imines; Topoisomerase I inhibitors; Drug Discovery3003 Pharmaceutical Science; Organic Chemistry; Pharmacology1-a]quinoxalin-6-iminesDNA Topoisomerases Type ISolubilityBiochemistryCell cultureApoptosisIsoindolo[2Cancer cellIminesG-quadruplex interactionDrug Screening Assays Antitumor
researchProduct

Surface-immobilized DNAzyme-type biocatalysis

2014

The structure of the double helix of deoxyribonucleic acid (DNA, also called duplex-DNA) was elucidated sixty years ago by Watson, Crick, Wilkins and Franklin. Since then, DNA has continued to hold a fascination for researchers in diverse fields including medicine and nanobiotechnology. Nature has indeed excelled in diversifying the use of DNA: beyond its canonical role of repository of genetic information, DNA could also act as a nanofactory able to perform some complex catalytic tasks in an enzyme-mimicking manner. The catalytic capability of DNA was termed DNAzyme; in this context, a peculiar DNA structure, a quadruple helix also named quadruplex-DNA, has recently garnered considerable i…

StreptavidinSurface PropertiesImmobilized Nucleic AcidsDeoxyribozymeContext (language use)Nanotechnology010402 general chemistryG-quadruplex01 natural sciences[ CHIM ] Chemical Scienceschemistry.chemical_compoundNanobiotechnology[CHIM]Chemical Sciencesheterocyclic compoundsGeneral Materials ScienceComputingMilieux_MISCELLANEOUS010405 organic chemistryDNA Catalytic[CHIM.CATA]Chemical Sciences/Catalysis0104 chemical sciencesG-QuadruplexesPeroxidaseschemistryBiotinylationHelixBiocatalysisOxidation-ReductionDNA
researchProduct

Interplay of three G‑quadruplex units in the KIT promoter

2019

The proto-oncogene KIT encodes for a tyrosine kinase receptor, which is a clinically validated target for treating gastrointestinal stromal tumors. The KIT promoter contains a G-rich domain within a relatively long sequence potentially able to form three adjacent G-quadruplex (G4) units, namely, K2, SP, and K1. These G4 domains have been studied mainly as single quadruplex units derived from short truncated sequences and are currently considered promising targets for anticancer drugs, alternatively to the encoded protein. Nevertheless, the information reported so far does not contemplate the interplay between those neighboring G4s in the context of the whole promoter, possibly thwarting dru…

Stromal cellbiologyChemistryGeneral ChemistryG-quadruplexBiochemistryMolecular biologyProto-Oncogene MasCatalysisReceptor tyrosine kinaseG‐Quadruplex Multiple G4 cancerG-QuadruplexesProto-Oncogene Proteins c-kitColloid and Surface ChemistrySettore CHIM/03 - Chimica Generale E Inorganicabiology.proteinHumansPromoter Regions GeneticGene
researchProduct

Deciphering the DNAzyme activity of multimeric quadruplexes: insights into their actual role in the telomerase activity evaluation assay.

2011

The end of human telomeres is comprised of a long G-rich single-stranded DNA (known as 3'-overhang) able to adopt an unusual three-dimensional "beads-on-the-string" organization made of consecutively stacked G-quadruplex units (so-called quadruplex multimers). It has been widely demonstrated that, upon interaction with hemin, discrete quadruplexes acquire peroxidase-mimicking properties, oxidizing several organic probes in H(2)O(2)-rich conditions; this property, known as DNAzyme, has found tens of applications in the last two decades. However, little is known about the DNAzyme activity of multimeric quadruplexes; this is an important question to address, especially in light of recent repor…

TelomeraseDeoxyribozyme010402 general chemistryG-quadruplex01 natural sciencesBiochemistryCatalysischemistry.chemical_compoundColloid and Surface Chemistry[CHIM]Chemical Sciencesheterocyclic compoundsBinding siteTelomeraseComputingMilieux_MISCELLANEOUSBinding Sites010405 organic chemistryChemistryGeneral Chemistry[CHIM.CATA]Chemical Sciences/CatalysisDNA Catalytic0104 chemical sciencesTelomereG-QuadruplexesBiochemistryHeminDNAHeminJournal of the American Chemical Society
researchProduct