Search results for "Quantum Computation"

showing 10 items of 43 documents

Adiabatic quantum search scheme with atoms in a cavity driven by lasers

2007

We propose an implementation of the quantum search algorithm of a marked item in an unsorted list of N items by adiabatic passage in a cavity-laser-atom system. We use an ensemble of N identical three-level atoms trapped in a single-mode cavity and driven by two lasers. In each atom, the same level represents a database entry. One of the atoms is marked by having an energy gap between its two ground states. Appropriate time delays between the two laser pulses allow one to populate the marked state starting from an initial entangled state within a decoherence-free adiabatic subspace. The time to achieve such a process is shown to exhibit the Grover speedup.

PhysicsQuantum networkQuantum Physics[ PHYS.QPHY ] Physics [physics]/Quantum Physics [quant-ph]Cavity quantum electrodynamicsFOS: Physical sciencesGeneral Physics and AstronomyOne-way quantum computerAdiabatic quantum computation01 natural sciences010305 fluids & plasmasOpen quantum system[PHYS.QPHY]Physics [physics]/Quantum Physics [quant-ph]Quantum mechanics0103 physical sciencesPrincipal quantum numberPhysics::Atomic PhysicsQuantum Physics (quant-ph)010306 general physicsAdiabatic processComputingMilieux_MISCELLANEOUS[PHYS.QPHY] Physics [physics]/Quantum Physics [quant-ph]Quantum computer
researchProduct

Analog Grover search by adiabatic passage in a cavity-laser-atom system

2008

A physical implementation of the adiabatic Grover search is theoretically investigated in a system of N identical three-level atoms trapped in a single mode cavity. Some of the atoms are marked through the presence of an energy gap between their two ground states. The search is controlled by two partially delayed lasers which allow a deterministic adiabatic transfer from an initially entangled state to the marked states. Pulse schemes are proposed to satisfy the Grover speedup either exactly or approximately, and the success rate of the search is calculated.

PhysicsQuantum opticsQuantum Physics[ PHYS.QPHY ] Physics [physics]/Quantum Physics [quant-ph]FOS: Physical sciencesOne-way quantum computerLaserAdiabatic quantum computation01 natural sciencesAtomic and Molecular Physics and Optics010305 fluids & plasmaslaw.inventionPulse (physics)[PHYS.QPHY]Physics [physics]/Quantum Physics [quant-ph]lawQuantum mechanics0103 physical sciencesAtom010306 general physicsAdiabatic processQuantum Physics (quant-ph)[PHYS.QPHY] Physics [physics]/Quantum Physics [quant-ph]ComputingMilieux_MISCELLANEOUSQuantum computer
researchProduct

A geometric analysis of the effects of noise on Berry phase

2007

In this work we describe the effect of classical and quantum noise on the Berry phase. It is not a topical review article but rather an overview of our work in this field aiming at giving a simple pictorial intuition of our results.

PhysicsWork (thermodynamics)Physics and Astronomy (miscellaneous)Geometric analysisField (physics)General MathematicsQuantum noiseQUANTUM COMPUTATIONNoiseGeometric phaseSYSTEMSSimple (abstract algebra)Quantum error correctionQuantum mechanicsgeometric phases open quantum systems quantum information theoryStatistical physics
researchProduct

Adiabatic approximation for quantum dissipative systems: formulation, topology and superadiabatic tracking

2010

A generalized adiabatic approximation is formulated for a two-state dissipative Hamiltonian which is valid beyond weak dissipation regimes. The history of the adiabatic passage is described by superadiabatic bases as in the nondissipative regime. The topology of the eigenvalue surfaces shows that the population transfer requires, in general, a strong coupling with respect to the dissipation rate. We present, furthermore, an extension of the Davis-Dykhne-Pechukas formula to the dissipative regime using the formalism of Stokes lines. Processes of population transfer by an external frequency-chirped pulse-shaped field are given as examples.

Physics[PHYS]Physics [physics]DissipationDissipative operatorAdiabatic quantum computationTopology01 natural sciencesAtomic and Molecular Physics and Optics010305 fluids & plasmasAdiabatic theoremsymbols.namesakeClassical mechanicsQuantum stateQuantum electrodynamics0103 physical sciencessymbolsDissipative system010306 general physicsAdiabatic processHamiltonian (quantum mechanics)ComputingMilieux_MISCELLANEOUS
researchProduct

Topology of adiabatic passage

2002

We examine the topology of eigenenergy surfaces characterizing the population transfer processes based on adiabatic passage. We show that this topology is the essential feature for the analysis of the population transfers and the prediction of its final result. We reinterpret diverse known processes, such as stimulated Raman adiabatic passage (STIRAP), frequency-chirped adiabatic passage and Stark-chirped rapid adiabatic passage. Moreover, using this picture, we display new related possibilities of transfer. In particular, we show that we can selectively control the level that will be populated in STIRAP process in $\ensuremath{\Lambda}$ or V systems by the choice of the peak amplitudes or …

Physicseducation.field_of_studyPopulationStimulated Raman adiabatic passagePulse sequenceLambdaAdiabatic quantum computationTopologyAtomic and Molecular Physics and OpticsAmplitudeQuantum mechanicsPhysics::Atomic and Molecular ClustersAdiabatic processeducationTopology (chemistry)Physical Review A
researchProduct

New approach to describe two coupled spins in a variable magnetic field

2021

We propose a method to describe the evolution of two spins coupled by hyperfine i nteraction in an external time- dependent magnetic field. We apply the approach to the case of hyperfine interaction with axial symmetry, which can be solved exactly in a constant, appropriately oriented magnetic field. In order to t reat t he n onstationary d ynamical p roblem, we modify the time-dependent Schrödinger equation through a change of representation that, by exploiting an instantaneous (adiabatic) basis makes the time-dependent Hamiltonian diagonal at any time instant. The solution of the transformed time-dependent Schrödinger FRVBUJPO in the form of chronologically ordered exponents with transpar…

Quantum ComputationPhysicsQuantum PhysicsGeometric PhaseSpinsQuantum Physics; Quantum PhysicsFOS: Physical sciencesSchrödinger equationMagnetic fieldsymbols.namesakeExact solutions in general relativityQuantum mechanicssymbolsHamiltonian (quantum mechanics)Adiabatic processAxial symmetryQuantum Physics (quant-ph)QubitsHyperfine structure
researchProduct

Assessing the progress of trapped-ion processors towards fault-tolerant quantum computation

2017

41 pags., 32 figs., 7 tabs. -- Open Access funded by Creative Commons Atribution Licence 4.0

Quantum PhysicsComputer sciencebusiness.industryPhysicsQC1-999Electrical engineeringGeneral Physics and AstronomyFOS: Physical sciencesCreative commons01 natural sciences010305 fluids & plasmas0103 physical sciencesQuantum InformationQuantum information010306 general physicsbusinessQuantum Physics (quant-ph)Fault tolerant quantum computation
researchProduct

Toward Prediction of Financial Crashes with a D-Wave Quantum Annealer

2019

The prediction of financial crashes in a complex financial network is known to be an NP-hard problem, which means that no known algorithm can efficiently find optimal solutions. We experimentally explore a novel approach to this problem by using a D-Wave quantum annealer, benchmarking its performance for attaining a financial equilibrium. To be specific, the equilibrium condition of a nonlinear financial model is embedded into a higher-order unconstrained binary optimization (HUBO) problem, which is then transformed into a spin-1/2 Hamiltonian with at most, two-qubit interactions. The problem is thus equivalent to finding the ground state of an interacting spin Hamiltonian, which can be app…

Quantum Physicsfinancial networksCondensed Matter - Mesoscale and Nanoscale Physicsadiabatic quantum optimizationquantum computationMesoscale and Nanoscale Physics (cond-mat.mes-hall)General Physics and AstronomyFOS: Physical sciencesQuantum Physics (quant-ph)
researchProduct

Entanglement replication in driven-dissipative many body systems

2012

We study the dissipative dynamics of two independent arrays of many-body systems, locally driven by a common entangled field. We show that in the steady state the entanglement of the driving field is reproduced in an arbitrarily large series of inter-array entangled pairs over all distances. Local nonclassical driving thus realizes a scale-free entanglement replication and long-distance entanglement distribution mechanism that has immediate bearing on the implementation of quantum communication networks.

Quantum decoherenceFOS: Physical sciencesGeneral Physics and AstronomyQuantum entanglementquantum networksSquashed entanglement01 natural sciences010305 fluids & plasmasOPERATIONSQUANTUM COMPUTATION0103 physical sciencesCAVITY ARRAYS010306 general physicsTELEPORTATIONQuantum computerPhysicsQuantum PhysicsNANOCAVITIESCANNOTentanglement quantum networks open quantum systems.open quantum systemsQuantum PhysicsCondensed Matter - Other Condensed MatterArbitrarily largeLIGHTClassical mechanicsTRAPPED IONSPHOTONDissipative systemW stateentanglementQuantum Physics (quant-ph)MATTERQuantum teleportationOther Condensed Matter (cond-mat.other)
researchProduct

The quantum trajectory approach to geometric phase for open systems

2005

The quantum jump method for the calculation of geometric phase is reviewed. This is an operational method to associate a geometric phase to the evolution of a quantum system subjected to decoherence in an open system. The method is general and can be applied to many different physical systems, within the Markovian approximation. As examples, two main source of decoherence are considered: dephasing and spontaneous decay. It is shown that the geometric phase is to very large extent insensitive to the former, i.e. it is independent of the number of jumps determined by the dephasing operator.

Quantum phase transitionPhysicsNuclear and High Energy PhysicsQuantum decoherenceDecoherence-free subspacesDephasingquantum computationGeometric phaseGeneral Physics and AstronomyAstronomy and AstrophysicsOpen quantum systemClassical mechanicsQuantum error correctionQuantum processQuantum dissipationdecoherence
researchProduct