Search results for "Quantum Decoherence"
showing 10 items of 159 documents
Structural change in multipartite entanglement sharing: a random matrix approach
2010
We study the typical entanglement properties of a system comprising two independent qubit environments interacting via a shuttling ancilla. The initial preparation of the environments is modeled using random-matrix techniques. The entanglement measure used in our study is then averaged over many histories of randomly prepared environmental states. Under a Heisenberg interaction model, the average entanglement between the ancilla and one of the environments remains constant, regardless of the preparation of the latter and the details of the interaction. We also show that, upon suitable kinematic and dynamical changes in the ancilla-environment subsystems, the entanglement-sharing structure u…
Entanglement dynamics of two independent qubits in environments with and without memory
2007
A procedure to obtain the dynamics of $N$ independent qudits ($d$-level systems) each interacting with its own reservoir, for any arbitrary initial state, is presented. This is then applied to study the dynamics of the entanglement of two qubits, initially in an extended Werner-like mixed state with each of them in a zero temperature non-Markovian environment. The dependence of the entanglement dynamics on the purity and degree of entanglement of the initial states and on the amount of non-Markovianity is also given. This extends the previous work about non-Markovian effects on the two-qubit entanglement dynamics for initial Bell-like states [B. Bellomo \textit{et al.}, Phys. Rev. Lett. \te…
Non-markovian effects on the dynamics of entanglement.
2008
A procedure that allows to obtain the dynamics of $N$ independent bodies each locally interacting with its own reservoir is presented. It relies on the knowledge of single body dynamics and it is valid for any form of environment noise. It is then applied to the study of non-Markovian dynamics of two independent qubits, each locally interacting with a zero temperature reservoir. It is shown that, although no interaction is present or mediated between the qubits, there is a revival of their entanglement, after a finite period of time of its complete disappearance.
Influence of dissipation on the extraction of quantum states via repeated measurements
2007
A quantum system put in interaction with another one that is repeatedly measured is subject to a non-unitary dynamics, through which it is possible to extract subspaces. This key idea has been exploited to propose schemes aimed at the generation of pure quantum states (purification). All such schemes have so far been considered in the ideal situations of isolated systems. In this paper, we analyze the influence of non-negligible interactions with environment during the extraction process, with the scope of investigating the possibility of purifying the state of a system in spite of the sources of dissipation. A general framework is presented and a paradigmatic example consisting of two inte…
Comparative investigation of the freezing phenomena for quantum correlations under nondissipative decoherence
2013
We show that the phenomenon of frozen discord, exhibited by specific classes of two-qubit states under local nondissipative decoherent evolutions, is a common feature of all known bona fide measures of general quantum correlations. All those measures, despite inducing typically inequivalent orderings on the set of nonclassically correlated states, return a constant value in the considered settings. Every communication protocol which relies on quantum correlations as resource will run with a performance completely unaffected by noise in the specified dynamical conditions. We provide a geometric interpretation of this
Reconstruction of Markovian master equation parameters through symplectic tomography
2009
In open quantum systems, phenomenological master equations with unknown parameters are often introduced. Here we propose a time-independent procedure based on quantum tomography to reconstruct the potentially unknown parameters of a wide class of Markovian master equations. According to our scheme, the system under investigation is initially prepared in a Gaussian state. At an arbitrary time t, in order to retrieve the unknown coefficients one needs to measure only a finite number (ten at maximum) of points along three time-independent tomograms. Due to the limited amount of measurements required, we expect our proposal to be especially suitable for experimental implementations.
Non-Markovian dynamics and steady-state entanglement of cavity arrays in finite-bandwidth squeezed reservoirs
2014
When two chains of quantum systems are driven at their ends by a two-mode squeezed reservoir, they approach a steady state characterized by the formation of many entangled pairs. Each pair is made of one element of the first and one of the second chain. This effect has been already predicted under the assumption of broadband squeezing. Here we investigate the situation of finite-bandwidth reservoirs. This is done by modeling the driving bath as the output field of a non-degenerate parametric oscillator. The resulting non-Markovian dynamics is studied within the theoretical framework of cascade open quantum systems. It is shown that the formation of pair-entangled structures occurs as long a…
Harnessing non-Markovian quantum memory by environmental coupling
2015
Controlling the non-Markovian dynamics of open quantum systems is essential in quantum information technology since it plays a crucial role in preserving quantum memory. Albeit in many realistic scenarios the quantum system can simultaneously interact with composite environments, this condition remains little understood, particularly regarding the effect of the coupling between environmental parts. We analyze the non-Markovian behavior of a qubit interacting at the same time with two coupled single-mode cavities which in turn dissipate into memoryless or memory-keeping reservoirs. We show that increasing the control parameter, that is the two-mode coupling, allows for triggering and enhanci…
Fast and robust population transfer in two-level quantum systems with dephasing noise and/or systematic frequency errors
2013
We design, by invariant-based inverse engineering, driving fields that invert the population of a two-level atom in a given time, robustly with respect to dephasing noise and/or systematic frequency shifts. Without imposing constraints, optimal protocols are insensitive to the perturbations but need an infinite energy. For a constrained value of the Rabi frequency, a flat $\pi$ pulse is the least sensitive protocol to phase noise but not to systematic frequency shifts, for which we describe and optimize a family of protocols.
Interaction free and decoherence free states
2015
An interaction free evolving state of a closed bipartite system composed of two interacting subsystems is a generally mixed state evolving as if the interaction were a c-number. In this paper we find the characteristic equation of states possessing similar properties for a bipartite systems governed by a linear dynamical equation whose generator is sum of a free term and an interaction term. In particular in the case of a small system coupled to its environment, we deduce the characteristic equation of decoherence free states namely mixed states evolving as if the interaction term were effectively inactive. Several examples illustrate the applicability of our theory in different physical co…