Search results for "Quantum Decoherence"

showing 10 items of 159 documents

Quantum cloning in spin networks

2004

We introduce an approach to quantum cloning based on spin networks and we demonstrate that phase covariant cloning can be realized using no external control but only with a proper design of the Hamiltonian of the system. In the 1 -> 2 cloning we find that the XY model saturates the value for the fidelity of the optimal cloner and gives values comparable to it in the genera N -> M case. We finally discuss the effect of external noise. Our protocol is much more robust to decoherence than a conventional procedure based on quantum gates.

PhysicsQuantum opticsQuantum PhysicsQuantum decoherenceCondensed Matter - Mesoscale and Nanoscale PhysicsFOS: Physical sciencesAtomic and Molecular Physics and Optics; Physics and Astronomy (all)Quantum PhysicsQuantum numberAtomic and Molecular Physics and Opticssymbols.namesakePhysics and Astronomy (all)Quantum mechanicsAtomic and Molecular PhysicsMesoscale and Nanoscale Physics (cond-mat.mes-hall)symbolsSpin networkQuantum cloningand OpticsHamiltonian (quantum mechanics)Quantum information scienceQuantum Physics (quant-ph)Quantum
researchProduct

Heat flux and quantum correlations in dissipative cascaded systems

2015

We study the dynamics of heat flux in the thermalization process of a pair of identical quantum systems that interact dissipatively with a reservoir in a cascaded fashion. Despite that the open dynamics of the bipartite system $S$ is globally Lindbladian, one of the subsystems ``sees'' the reservoir in a state modified by the interaction with the other subsystem and hence it undergoes a non-Markovian dynamics. As a consequence, the heat flow exhibits a nonexponential time behavior which can greatly deviate from the case where each party is independently coupled to the reservoir. We investigate both thermal and correlated initial states of $S$ and show that the presence of correlations at th…

PhysicsQuantum opticsQuantum PhysicsQuantum decoherenceQuantum computers01 natural sciencesAtomic and Molecular Physics and OpticsSettore FIS/03 - Fisica Della MateriaDynamics010305 fluids & plasmasHeat fluxQuantum electronicsQubitQuantum mechanics0103 physical sciencesDissipative systemTrace distanceQuantum PhysicQuantum information010306 general physicsQuantumHarmonic oscillator
researchProduct

Geometric phase in open systems.

2003

We calculate the geometric phase associated to the evolution of a system subjected to decoherence through a quantum-jump approach. The method is general and can be applied to many different physical systems. As examples, two main source of decoherence are considered: dephasing and spontaneous decay. We show that the geometric phase is completely insensitive to the former, i.e. it is independent of the number of jumps determined by the dephasing operator.

PhysicsSpontaneous decaySpontaneous decayDensity matrixQuantum PhysicsQuantum decoherenceMarkovian master equationDephasingOperator (physics)Physical systemGeneral Physics and AstronomyFOS: Physical sciencesCondensed Matter::Mesoscopic Systems and Quantum Hall EffectGeometric phaseBerrys phaseStatistical physicsQuantum Physics (quant-ph)Physical review letters
researchProduct

Dissipative dynamics in a quantum bistable system: Crossover from weak to strong damping

2015

The dissipative dynamics of a quantum bistable system coupled to a Ohmic heat bath is investigated beyond the spin-boson approximation. Within the path-integral approach to quantum dissipation, we propose an approximation scheme which exploits the separation of time scales between intra- and interwell (tunneling) dynamics. The resulting generalized master equation for the populations in a space localized basis enables us to investigate a wide range of temperatures and system-environment coupling strengths. A phase diagram in the coupling-temperature space is provided to give a comprehensive account of the different dynamical regimes.

PhysicsStatistics and ProbabilityQuantum decoherenceBistabilityStatistical Mechanics (cond-mat.stat-mech)ddc:530FOS: Physical sciencesCondensed Matter PhysicSpace (mathematics)530 PhysikCoupling (physics)Quantum mechanicsMaster equationStatistical physicsQuantum dissipationQuantumQuantum tunnellingCondensed Matter - Statistical MechanicsStatistical and Nonlinear Physic
researchProduct

Direct Identification of Dilute Surface Spins on Al2O3 : Origin of Flux Noise in Quantum Circuits

2017

An on-chip electron spin resonance technique is applied to reveal the nature and origin of surface spins on Al2O3. We measure a spin density of 2.2×1017 spins/m2, attributed to physisorbed atomic hydrogen and S=1/2 electron spin states on the surface. This is direct evidence for the nature of spins responsible for flux noise in quantum circuits, which has been an issue of interest for several decades. Our findings open up a new approach to the identification and controlled reduction of paramagnetic sources of noise and decoherence in superconducting quantum devices.

PhysicsSuperconductivityQuantum decoherenceCondensed matter physicsSpinsPulsed EPRGeneral Physics and AstronomyMacroscopic quantum phenomena02 engineering and technology021001 nanoscience & nanotechnology01 natural scienceslaw.inventionlaw0103 physical sciencesCondensed Matter::Strongly Correlated Electrons010306 general physics0210 nano-technologyElectron paramagnetic resonanceQuantumNoise (radio)Physical Review Letters
researchProduct

Characterisation of Cooper Pair Boxes for Quantum Bits

2001

We have fabricated and measured single Cooper pair boxes (SCB) using superconducting single electron transistors (SET) as electrometers. The box storage performance for Cooper pairs was measured by observing the changes in the SCB island potential. We are also fabricating niobium structures, which are expected to have less problems with quasiparticle contamination than similar aluminium based devices because of the high critical temperature. The use of niobium may also reduce decoherence and thereby increase the time available for quantum logic operations.

PhysicsSuperconductivityQuantum decoherenceCondensed matter physicsTransistorNiobiumchemistry.chemical_elementCondensed Matter::Mesoscopic Systems and Quantum Hall EffectQuantum logiclaw.inventionchemistrylawCondensed Matter::SuperconductivityQubitQuasiparticleCooper pair
researchProduct

Theoretical analysis of a realistic atom-chip quantum gate

2006

9 pages, 5 color figures; International audience; We present a detailed, realistic analysis of the implementation of a proposal for a quantum phase gate based on atomic vibrational states, specializing it to neutral rubidium atoms on atom chips. We show how to create a double-well potential with static currents on the atom chips, using for all relevant parameters values that are achieved with present technology. The potential barrier between the two wells can be modified by varying the currents in order to realize a quantum phase gate for qubit states encoded in the atomic external degree of freedom. The gate performance is analyzed through numerical simulations; the operation time is ~10 m…

PhysicsTRAPPED ATOMSQuantum decoherenceSURFACESInstitut für Physik und Astronomie01 natural sciencesAtomic and Molecular Physics and Optics010305 fluids & plasmasNOISEQuantum circuitQuantum gate[PHYS.QPHY]Physics [physics]/Quantum Physics [quant-ph]Controlled NOT gateQubitQuantum mechanics0103 physical sciencesAtomPhysics::Atomic PhysicsAtomic physics010306 general physicsNEUTRAL ATOMSQuantumENTANGLEMENTQuantum computer
researchProduct

Microscopic description of dissipative dynamics of a level-crossing transition

2011

We analyze the effect of a dissipative bosonic environment on the Landau-Zener-Stuckelberg-Majorana (LZSM) level crossing model by using a microscopic approach to derive the relevant master equation. For an environment at zero temperature and weak dissipation our microscopic approach confirms the independence of the survival probability on the decay rate that has been predicted earlier by the simple phenomenological LZSM model. For strong decay the microscopic approach predicts a notable increase of the survival probability, which signals dynamical decoupling of the initial state. Unlike the phenomenological model our approach makes it possible to study the dependence of the system dynamics…

PhysicsTime-dependent HamiltonianQuantum PhysicsDynamical decouplingQuantum decoherenceSettore FIS/02 - Fisica Teorica Modelli E Metodi MatematiciFOS: Physical sciencesDissipationAtomic and Molecular Physics and OpticsSettore FIS/03 - Fisica Della MateriaPhenomenological modelMaster equationDissipative systemQuantum Zeno effectStatistical physicsQuantum Physics (quant-ph)Landau-Zener transitionIndependence (probability theory)Quantum Zeno effect
researchProduct

Reconstruction of time-dependent coefficients: a check of approximation schemes for non-Markovian convolutionless dissipative generators

2010

We propose a procedure to fully reconstruct the time-dependent coefficients of convolutionless non-Markovian dissipative generators via a finite number of experimental measurements. By combining a tomography based approach with a proper data sampling, our proposal allows to relate the time-dependent coefficients governing the dissipative evolution of a quantum system to experimentally accessible quantities. The proposed scheme not only provides a way to retrieve full information about potentially unknown dissipative coefficients but also, most valuably, can be employed as a reliable consistency test for the approximations involved in the theoretical derivation of a given non-Markovian convo…

PhysicsTomography Convolutionless master equationQuantum PhysicsQuantum decoherenceSettore FIS/02 - Fisica Teorica Modelli E Metodi MatematiciStochastic processSampling (statistics)Markov processFOS: Physical sciencesAtomic and Molecular Physics and Opticssymbols.namesakeQuantum mechanicsMaster equationDissipative systemsymbolsQuantum systemStatistical physicsQuantum Physics (quant-ph)Finite set
researchProduct

Photon localization versus population trapping in a coupled-cavity array

2014

We consider a coupled-cavity array (CCA), where one cavity interacts with a two-level atom under the rotating-wave approximation. We investigate the excitation transport dynamics across the array, which arises in the atom's emission process into the CCA vacuum. Due to the known formation of atom-photon bound states, partial field localization and atomic population trapping in general take place. We study the functional dependance on the coupling strength of these two phenomena and show that the threshold values beyond which they become significant are different. As the coupling strength grows from zero, field localization is exhibited first.

Physicseducation.field_of_studyQuantum Physicscavity array quantum transport open quantum systems cavity QEDPhotonQuantum decoherenceField (physics)PopulationFOS: Physical sciencesTrappingAtomic and Molecular Physics and OpticsAtomBound stateAtomic physicseducationQuantum Physics (quant-ph)Excitation
researchProduct