Search results for "Quantum Decoherence"

showing 10 items of 159 documents

Fast SWAP gate by adiabatic passage

2005

We present a process for the construction of a SWAP gate which does not require a composition of elementary gates from a universal set. We propose to employ direct techniques adapted to the preparation of this specific gate. The mechanism, based on adiabatic passage, constitutes a decoherence-free method in the sense that spontaneous emission and cavity damping are avoided.

PhysicsQuantum PhysicsQuantum decoherenceFOS: Physical sciencesUniversal setHardware_PERFORMANCEANDRELIABILITYTopologyAtomic and Molecular Physics and OpticsQuantum circuitComputer Science::Hardware ArchitectureQuantum gateComputer Science::Emerging Technologies[ PHYS.PHYS.PHYS-AO-PH ] Physics [physics]/Physics [physics]/Atmospheric and Oceanic Physics [physics.ao-ph]Controlled NOT gateQuantum mechanicsHardware_INTEGRATEDCIRCUITSSpontaneous emissionQuantum Physics (quant-ph)Adiabatic processQuantum computerHardware_LOGICDESIGN
researchProduct

Hilbert Space Average Method and adiabatic quantum search

2009

6 pages, 1 figure.-- ISI article identifier:000262979000049.-- ArXiv pre-print avaible at:http://arxiv.org/abs/0810.1456

PhysicsQuantum PhysicsQuantum decoherenceHilbert spaceFOS: Physical sciencesAtomic and Molecular Physics and Opticssymbols.namesakeQuantum error correctionQuantum mechanicssymbolsQuantum operationQuantum phase estimation algorithmQuantum algorithmAdiabatic processQuantum Physics (quant-ph)Quantum computer
researchProduct

Distributed correlations and information flows within a hybrid multipartite quantum-classical system

2015

Understanding the non-Markovian mechanisms underlying the revivals of quantum entanglement in the presence of classical environments is central in the theory of quantum information. Tentative interpretations have been given by either the role of the environment as a control device or the concept of hidden entanglement. We address this issue from an information-theoretic point of view. To this aim, we consider a paradigmatic tripartite system, already realized in the laboratory, made of two independent qubits and a random classical field locally interacting with one qubit alone. We study the dynamical relationship between the two-qubit entanglement and the genuine tripartite correlations of …

PhysicsQuantum PhysicsQuantum decoherenceInformation flowClassical environmentNon-MarkovianityFOS: Physical sciencesQuantum correlationQuantum PhysicsQuantum entanglementINFORMAÇÃO QUÂNTICASquashed entanglementMultipartite entanglementSettore FIS/03 - Fisica Della MateriaAtomic and Molecular Physics and OpticsMultipartiteOpen quantum systems; Classical environment; Quantum correlations; Information flows; Non-MarkovianityOpen quantum systemQuantum mechanicsQubitStatistical physicsQuantum informationQuantum Physics (quant-ph)Quantum
researchProduct

Microscopic derivation of the Jaynes-Cummings model with cavity losses

2006

In this paper we provide a microscopic derivation of the master equation for the Jaynes-Cummings model with cavity losses. We single out both the differences with the phenomenological master equation used in the literature and the approximations under which the phenomenological model correctly describes the dynamics of the atom-cavity system. Some examples wherein the phenomenological and the microscopic master equations give rise to different predictions are discussed in detail.

PhysicsQuantum PhysicsQuantum decoherenceJaynes–Cummings modelSettore FIS/02 - Fisica Teorica Modelli E Metodi MatematiciCavity quantum electrodynamicsFOS: Physical sciences01 natural sciencesAtomic and Molecular Physics and OpticsSettore FIS/03 - Fisica Della Materia010305 fluids & plasmas0103 physical sciencesPhenomenological modelMaster equationQUANTUM-ELECTRODYNAMICS:AYNES-CUMMINGS MODELStatistical physicsQuantum Physics (quant-ph)010306 general physics
researchProduct

Relaxation due to random collisions with a many-qudit environment

2008

We analyze the dynamics of a system qudit of dimension mu sequentially interacting with the nu-dimensional qudits of a chain playing the ore of an environment. Each pairwise collision has been modeled as a random unitary transformation. The relaxation to equilibrium of the purity of the system qudit, averaged over random collisions, is analytically computed by means of a Markov chain approach. In particular, we show that the steady state is the one corresponding to the steady state for random collisions with a single environment qudit of effective dimension nu_e=nu*mu. Finally, we numerically investigate aspects of the entanglement dynamics for qubits (mu=nu=2) and show that random unitary …

PhysicsQuantum PhysicsQuantum decoherenceMarkov chainFOS: Physical sciencesQuantum entanglementQuantum PhysicsUnitary transformationEffective dimensionMultipartite entanglementAtomic and Molecular Physics and OpticsQuantum mechanicsQubitfondamental conceptsRelaxation (approximation)Quantum Physics (quant-ph)
researchProduct

Non-Markovian dissipative dynamics of two coupled qubits in independent reservoirs: a comparison between exact solutions and master equation approach…

2009

The reduced dynamics of two interacting qubits coupled to two independent bosonic baths is investigated. The one-excitation dynamics is derived and compared with that based on the resolution of appropriate non-Markovian master equations. The Nakajima-Zwanzig and the time-convolutionless projection operator techniques are exploited to provide a description of the non-Markovian features of the dynamics of the two-qubits system. The validity of such approximate methods and their range of validity in correspondence to different choices of the parameters describing the system are brought to light.

PhysicsQuantum PhysicsQuantum decoherenceMarkov processFOS: Physical sciencesAtomic and Molecular Physics and OpticsOpen quantum systemRange (mathematics)symbols.namesakeClassical mechanicsQubitMaster equationsymbolsopen quantum system master equation techniquesStatistical physicsQuantum Physics (quant-ph)BosonQuantum computer
researchProduct

Compact entanglement distillery using realistic quantum memories

2013

We adopt the beam splitter model for losses to analyse the performance of a recent compact continuous-variable entanglement distillation protocol [Phys. Rev. Lett. 108, 060502, (2012)] implemented using realistic quantum memories. We show that the decoherence undergone by a two-mode squeezed state while stored in a quantum memory can strongly modify the results of the preparatory step of the protocol. We find that the well-known method for locally increasing entanglement, phonon subtraction, may not result in entanglement gain when losses are taken into account. Thus, we investigate the critical number $m_c$ of phonon subtraction attempts from the matter modes of the quantum memory. If the …

PhysicsQuantum PhysicsQuantum decoherencePhononFOS: Physical sciencesQuantum PhysicsQuantum entanglementSquashed entanglement01 natural sciencesAtomic and Molecular Physics and Optics010305 fluids & plasmasQuantum mechanics0103 physical sciencesQuantum Physics (quant-ph)010306 general physicsRealization (systems)Entanglement distillationQuantumSqueezed coherent statePhysical Review A
researchProduct

Decoherence and robustness of parity-dependent entanglement in the dynamics of a trapped ion

2001

We study the entanglement between the 2D vibrational motion and two ground state hyperfine levels of a trapped ion, Under particular conditions this entanglement depends on the parity of the total initial vibrational quanta. We study the robustness of this quantum coherence effect with respect to the presence of non-dissipative sources of decoherence, and of an imperfect initial state preparation.

PhysicsQuantum PhysicsQuantum decoherencePhysics and Astronomy (miscellaneous)FOS: Physical sciencesParity (physics)Quantum PhysicsQuantum entanglementAtomic and Molecular Physics and OpticsIonRobustness (computer science)Quantum mechanicsQuantum Physics (quant-ph)Ground stateQuantumHyperfine structure
researchProduct

Non-Markovian dynamics of a single electron spin coupled to a nuclear spin bath

2008

We apply the time-convolutionless (TCL) projection operator technique to the model of a central spin which is coupled to a spin bath via nonuniform Heisenberg interaction. The second-order results of the TCL method for the coherences and populations of the central spin are determined analytically and compared with numerical simulations of the full von Neumann equation of the total system. The TCL approach is found to yield an excellent approximation in the strong field regime for the description of both the short-time dynamics and the long time behavior.

PhysicsQuantum PhysicsQuantum decoherenceQuantum dynamicsFOS: Physical sciencesQuantum entanglementCondensed Matter PhysicsSpin quantum numberElectronic Optical and Magnetic MaterialsOpen quantum systemspin systems non-Markovian dynamicsQuantum spin Hall effectQuantum electrodynamicsQuantum mechanicsQuantum spin liquidSpin (physics)Quantum Physics (quant-ph)
researchProduct

Collision-model-based approach to non-Markovian quantum dynamics

2013

We present a theoretical framework to tackle quantum non-Markovian dynamics based on a microscopic collision model (CM), where the bath consists of a large collection of initially uncorrelated ancillas. Unlike standard memoryless CMs, we endow the bath with memory by introducing inter-ancillary collisions between next system-ancilla interactions. Our model interpolates between a fully Markovian dynamics and the continuous interaction of the system with a single ancilla, i.e., a strongly non-Markovian process. We show that in the continuos limit one can derive a general master equation, which while keeping such features is guaranteed to describe an unconditionally completely positive and tra…

PhysicsQuantum PhysicsQuantum decoherenceQuantum dynamicsMarkov processFOS: Physical sciencesAtomic and Molecular Physics and Opticssymbols.namesakeExact solutions in general relativityClassical mechanicsSPINNon-Markovian open quantum systems collision modelsMaster equationDissipative systemsymbolsStatistical physicsQuantum informationQuantum Physics (quant-ph)Quantum
researchProduct