Search results for "Quantum Fluctuation"
showing 10 items of 92 documents
Quantum Spin Dynamics of Mode-Squeezed Luttinger Liquids in Two-Component Atomic Gases
2007
We report on the observation of the phase dynamics of interacting one-dimensional ultracold bosonic gases with two internal degrees of freedom. By controlling the non-linear atomic interactions close to a Feshbach resonance we are able to induce a phase diffusive many-body spin dynamics. We monitor this dynamical evolution by Ramsey interferometry, supplemented by a novel, many-body echo technique. We find that the time evolution of the system is well described by a Luttinger liquid initially prepared in a multimode squeezed state. Our approach allows us to probe the non-equilibrium evolution of one-dimensional many-body quantum systems.
Optimal persistent currents for interacting bosons on a ring with a gauge field
2013
We study persistent currents for interacting one-dimensional bosons on a tight ring trap, subjected to a rotating barrier potential, which induces an artificial U(1) gauge field. We show that, at intermediate interactions, the persistent current response is maximal, due to a subtle interplay of effects due to the barrier, the interaction and quantum fluctuations. These results are relevant for ongoing experiments with ultracold atomic gases on mesoscopic rings.
Vacuum field correlations and three-body Casimir-Polder potential with one excited atom
2004
The three-body Casimir-Polder potential between one excited and two ground-state atoms is evaluated. A physical model based on the dressed field correlations of vacuum fluctuations is used, generalizing a model previously introduced for three ground-state atoms. Although the three-body potential with one excited atom is already known in the literature, our model gives new insights on the nature of non-additive Casimir-Polder forces with one or more excited atoms.
Quantum effects on the herringbone ordering ofN2on graphite
1993
The effects of quantum fluctuations on the ``2-in'' herringbone ordering in a realistic model of 900 ${\mathrm{N}}_{2}$ molecules adsorbed in the (\ensuremath{\surd}3 \ifmmode\times\else\texttimes\fi{} \ensuremath{\surd}3 )R30\ifmmode^\circ\else\textdegree\fi{} structure on graphite are studied via path-integral Monte Carlo (PIMC) simulations. Quasiclassical and quasiharmonic calculations agree for high and low temperatures, respectively, but only PIMC gives satisfactory results over the entire temperature range. We can quantify the lowering of the transition temperature and the depression of the ground state order to 10% as compared to classical modeling.
Casimir-Polder interaction between an accelerated two-level system and an infinite plate
2007
We investigate the Casimir-Polder interaction energy between a uniformly accelerated two-level system and an infinite plate with Dirichlet boundary conditions. Our model is a two-level atom interacting with a massless scalar field, with a uniform acceleration in a direction parallel to the plate. We consider the contributions of vacuum fluctuations and of the radiation reaction field to the atom-wall Casimir-Polder interaction, and we discuss their dependence on the acceleration of the atom. We show that, as a consequence of the noninertial motion of the two-level atom, a thermal term is present in the vacuum fluctuation contribution to the Casimir-Polder interaction. Finally we discuss the…
Renormalization group approach to chaotic strings
2012
Coupled map lattices of weakly coupled Chebychev maps, so-called chaotic strings, may have a profound physical meaning in terms of dynamical models of vacuum fluctuations in stochastically quantized field theories. Here we present analytic results for the invariant density of chaotic strings, as well as for the coupling parameter dependence of given observables of the chaotic string such as the vacuum expectation value. A highly nontrivial and selfsimilar parameter dependence is found, produced by perturbative and nonperturbative effects, for which we develop a mathematical description in terms of suitable scaling functions. Our analytic results are in good agreement with numerical simulati…
Energy-level shifts of a uniformly accelerated atom between two reflecting plates
2011
We discuss the radiative level shifts of a uniformly accelerated atom moving between two infinite reflecting plates and interacting with a massless scalar field in the vacuum state. The atom, supposed to be a two-level system, accelerates in a direction parallel to the conducting plates. We evaluate separately the contributions of vacuum fluctuations and radiation reaction field to the energy shift of the atomic levels, and discuss their dependence on acceleration, atomic position and cavity length.
Simulating a quantum commensurate-incommensurate phase transition using two Raman-coupled one-dimensional condensates
2020
We study a transition between a homogeneous and an inhomogeneous phase in a system of one-dimensional, Raman tunnel-coupled Bose gases. The homogeneous phase shows a flat density and phase profile, whereas the inhomogeneous ground state is characterized by periodic density ripples, and a soliton staircase in the phase difference. We show that under experimentally viable conditions the transition can be tuned by the wavevector difference $Q$ of the Raman beams and can be described by the Pokrovsky-Talapov model for the relative phase between the two condensates. Local imaging available in atom chip experiments allows to observe the soliton lattice directly, while modulation spectroscopy can …
Theory of quantum fluctuations of optical dissipative structures - Application to the study of squeezing and intensity fluctuations of DOPO cavity so…
2007
We present a general theory of quantum fluctuations of dissipative structures in nonlinear optical cavities with transverse translation invariance. Perfect squeezing of the transverse momentum, detectable under homodyning, occurs irrespectively of the system parameters.
Creatable universes
2007
We consider the question of properly defining energy and momenta for non asymptotic Minkowskian spaces in general relativity. Only spaces of this type, whose energy, linear 3-momentum, and intrinsic angular momentum vanish, would be candidates for creatable universes, that is, for universes which could have arisen from a vacuum quantum fluctuation. Given a universe, we completely characterize the family of coordinate systems for which one could sensibly say that this universe is a creatable universe.