Search results for "Quantum Fluctuation"

showing 10 items of 92 documents

Quantum Spin Dynamics of Mode-Squeezed Luttinger Liquids in Two-Component Atomic Gases

2007

We report on the observation of the phase dynamics of interacting one-dimensional ultracold bosonic gases with two internal degrees of freedom. By controlling the non-linear atomic interactions close to a Feshbach resonance we are able to induce a phase diffusive many-body spin dynamics. We monitor this dynamical evolution by Ramsey interferometry, supplemented by a novel, many-body echo technique. We find that the time evolution of the system is well described by a Luttinger liquid initially prepared in a multimode squeezed state. Our approach allows us to probe the non-equilibrium evolution of one-dimensional many-body quantum systems.

PhysicsCondensed Matter::Quantum GasesCondensed matter physicsTime evolutionGeneral Physics and AstronomyFOS: Physical sciencesSpin engineering01 natural sciences010305 fluids & plasmasCondensed Matter - Other Condensed MatterRamsey interferometryLuttinger liquidQuantum mechanics[PHYS.COND.CM-GEN]Physics [physics]/Condensed Matter [cond-mat]/Other [cond-mat.other]0103 physical sciencesMathematics::Metric Geometry010306 general physicsFeshbach resonanceSpin (physics)Quantum fluctuationSqueezed coherent stateOther Condensed Matter (cond-mat.other)
researchProduct

Optimal persistent currents for interacting bosons on a ring with a gauge field

2013

We study persistent currents for interacting one-dimensional bosons on a tight ring trap, subjected to a rotating barrier potential, which induces an artificial U(1) gauge field. We show that, at intermediate interactions, the persistent current response is maximal, due to a subtle interplay of effects due to the barrier, the interaction and quantum fluctuations. These results are relevant for ongoing experiments with ultracold atomic gases on mesoscopic rings.

PhysicsCondensed Matter::Quantum GasesMesoscopic physicsGeneral Physics and AstronomyFOS: Physical sciencesPersistent currentRing (chemistry)Settore FIS/02 - Fisica Teorica Modelli e Metodi MatematiciTrap (computing)Quantum transportPhysics and Astronomy (all)Quantum Gases (cond-mat.quant-gas)Quantum mechanicsGauge theoryCondensed Matter - Quantum GasesQuantum fluctuationBoson
researchProduct

Vacuum field correlations and three-body Casimir-Polder potential with one excited atom

2004

The three-body Casimir-Polder potential between one excited and two ground-state atoms is evaluated. A physical model based on the dressed field correlations of vacuum fluctuations is used, generalizing a model previously introduced for three ground-state atoms. Although the three-body potential with one excited atom is already known in the literature, our model gives new insights on the nature of non-additive Casimir-Polder forces with one or more excited atoms.

PhysicsCondensed Matter::Quantum GasesQuantum PhysicsField (physics)resonancesdispersion forceFOS: Physical sciencesAtomic and Molecular Physics and OpticsCasimir effectExcited statePhysics::Atomic and Molecular ClustersPhysics::Atomic PhysicsAtomic physicsVacuum fluctuationQuantum Physics (quant-ph)Quantum fluctuation
researchProduct

Quantum effects on the herringbone ordering ofN2on graphite

1993

The effects of quantum fluctuations on the ``2-in'' herringbone ordering in a realistic model of 900 ${\mathrm{N}}_{2}$ molecules adsorbed in the (\ensuremath{\surd}3 \ifmmode\times\else\texttimes\fi{} \ensuremath{\surd}3 )R30\ifmmode^\circ\else\textdegree\fi{} structure on graphite are studied via path-integral Monte Carlo (PIMC) simulations. Quasiclassical and quasiharmonic calculations agree for high and low temperatures, respectively, but only PIMC gives satisfactory results over the entire temperature range. We can quantify the lowering of the transition temperature and the depression of the ground state order to 10% as compared to classical modeling.

PhysicsCondensed matter physicsTransition temperatureMonte Carlo methodPath integral formulationGeneral Physics and AstronomyOrder (ring theory)Atmospheric temperature rangeGround stateQuantum statistical mechanicsQuantum fluctuationPhysical Review Letters
researchProduct

Casimir-Polder interaction between an accelerated two-level system and an infinite plate

2007

We investigate the Casimir-Polder interaction energy between a uniformly accelerated two-level system and an infinite plate with Dirichlet boundary conditions. Our model is a two-level atom interacting with a massless scalar field, with a uniform acceleration in a direction parallel to the plate. We consider the contributions of vacuum fluctuations and of the radiation reaction field to the atom-wall Casimir-Polder interaction, and we discuss their dependence on the acceleration of the atom. We show that, as a consequence of the noninertial motion of the two-level atom, a thermal term is present in the vacuum fluctuation contribution to the Casimir-Polder interaction. Finally we discuss the…

PhysicsField (physics)Casimir-Polder interactionInteraction energyAtomic and Molecular Physics and OpticsCasimir effectsymbols.namesakeClassical mechanicsUnruh effectQuantum Electrodynamics in accelerated framesQuantum electrodynamicsDirichlet boundary conditionPhysics::Atomic and Molecular ClusterssymbolsUnruh effectPhysics::Atomic PhysicsBoundary value problemScalar fieldQuantum fluctuation
researchProduct

Renormalization group approach to chaotic strings

2012

Coupled map lattices of weakly coupled Chebychev maps, so-called chaotic strings, may have a profound physical meaning in terms of dynamical models of vacuum fluctuations in stochastically quantized field theories. Here we present analytic results for the invariant density of chaotic strings, as well as for the coupling parameter dependence of given observables of the chaotic string such as the vacuum expectation value. A highly nontrivial and selfsimilar parameter dependence is found, produced by perturbative and nonperturbative effects, for which we develop a mathematical description in terms of suitable scaling functions. Our analytic results are in good agreement with numerical simulati…

PhysicsField (physics)General MathematicsApplied MathematicsChaoticGeneral Physics and AstronomyFOS: Physical sciencesStatistical and Nonlinear PhysicsObservableRenormalization groupNonlinear Sciences - Chaotic DynamicsString (physics)Nonlinear Sciences::Chaotic DynamicsClassical mechanicsCoupling parameterStatistical physicsChaotic Dynamics (nlin.CD)Quantum fluctuationVacuum expectation value
researchProduct

Energy-level shifts of a uniformly accelerated atom between two reflecting plates

2011

We discuss the radiative level shifts of a uniformly accelerated atom moving between two infinite reflecting plates and interacting with a massless scalar field in the vacuum state. The atom, supposed to be a two-level system, accelerates in a direction parallel to the conducting plates. We evaluate separately the contributions of vacuum fluctuations and radiation reaction field to the energy shift of the atomic levels, and discuss their dependence on acceleration, atomic position and cavity length.

PhysicsField (physics)Vacuum stateCondensed Matter PhysicsCasimir-Polder forceAtomic and Molecular Physics and OpticsMassless particleGeneral Relativity and Quantum CosmologyAccelerationAtomRadiative transferPhysics::Accelerator PhysicsUnruh effectPhysics::Atomic PhysicsAtomic physicsScalar fieldMathematical PhysicsQuantum fluctuation
researchProduct

Simulating a quantum commensurate-incommensurate phase transition using two Raman-coupled one-dimensional condensates

2020

We study a transition between a homogeneous and an inhomogeneous phase in a system of one-dimensional, Raman tunnel-coupled Bose gases. The homogeneous phase shows a flat density and phase profile, whereas the inhomogeneous ground state is characterized by periodic density ripples, and a soliton staircase in the phase difference. We show that under experimentally viable conditions the transition can be tuned by the wavevector difference $Q$ of the Raman beams and can be described by the Pokrovsky-Talapov model for the relative phase between the two condensates. Local imaging available in atom chip experiments allows to observe the soliton lattice directly, while modulation spectroscopy can …

PhysicsMesoscopic physicsPhase transitionCondensed matter physicsPhononFOS: Physical sciences02 engineering and technology021001 nanoscience & nanotechnology01 natural sciencesQuantum Gases (cond-mat.quant-gas)Ultracold atom0103 physical sciencesSoliton010306 general physics0210 nano-technologyTranslational symmetryWave functionCondensed Matter - Quantum GasesQuantum fluctuation
researchProduct

Theory of quantum fluctuations of optical dissipative structures - Application to the study of squeezing and intensity fluctuations of DOPO cavity so…

2007

We present a general theory of quantum fluctuations of dissipative structures in nonlinear optical cavities with transverse translation invariance. Perfect squeezing of the transverse momentum, detectable under homodyning, occurs irrespectively of the system parameters.

PhysicsNonlinear opticalTransverse planeHomodyne detectionQuantum electrodynamicsQuantum mechanicsTransverse momentumDissipative systemFresnel numberQuantum PhysicsQuantum fluctuationIntensity (physics)
researchProduct

Creatable universes

2007

We consider the question of properly defining energy and momenta for non asymptotic Minkowskian spaces in general relativity. Only spaces of this type, whose energy, linear 3-momentum, and intrinsic angular momentum vanish, would be candidates for creatable universes, that is, for universes which could have arisen from a vacuum quantum fluctuation. Given a universe, we completely characterize the family of coordinate systems for which one could sensibly say that this universe is a creatable universe.

PhysicsNuclear and High Energy PhysicsAngular momentumCosmologiaGeneral relativitymedia_common.quotation_subjectCoordinate systemAstrophysics (astro-ph)FOS: Physical sciencesGeneral Relativity and Quantum Cosmology (gr-qc)Type (model theory)AstrophysicsUniverseGeneral Relativity and Quantum CosmologyTheoretical physicsRelativitat general (Física)Quantum fluctuationmedia_common
researchProduct