Search results for "Quantum Fluctuation"
showing 10 items of 92 documents
Duality-invariant Einstein-Planck relation and the speed of light at very short wavelengths
2011
We propose a generalized Einstein-Planck relation for photons which is invariant under the change $\ensuremath{\lambda}/a{l}_{P}$ to $a{l}_{P}/\ensuremath{\lambda}$, $\ensuremath{\lambda}$ being the photon wavelength, ${l}_{P}$ Planck's length, and $a$ a numerical constant. This yields a wavelength-dependent speed of light $v(\ensuremath{\lambda})=c/(1+{a}^{2}({l}_{P}/\ensuremath{\lambda}{)}^{2})$, with $c$ the usual speed of light in vacuo, indicating that the speed of light should decrease for sufficiently short wavelengths. We discuss the conceptual differences with the previous proposals related to a possible decrease of the speed of light for very short wavelengths based on quantum flu…
Quantum fluctuations of the conductance in the hopping regime
1992
Abstract The results of the numerical scaling approach for localization are used to discuss the statistical behaviour of the zero-temperature conductance of disordered systems of finite size. In the asymptotic regime of strong localization, where transport is dominated by hopping processes, explicit expressions for the temperature dependence of the fluctuations of the conductance and the resistance are obtained by assuming that the phase coherence length is given by the Mott hopping law. It is shown that the temperature dependence of the fluctuations of the logarithm of the conductance/resistance does not depend on the assumptions concerning the statistics of the hopping processes. The resu…
Gravity and handedness of photons
2017
Vacuum fluctuations of quantum fields are altered in presence of a strong gravitational background, with important physical consequences. We argue that a non-trivial spacetime geometry can act as an optically active medium for quantum electromagnetic radiation, in such a way that the state of polarization of radiation changes in time, even in the absence of electromagnetic sources. This is a quantum effect, and is a consequence of an anomaly related to the classical invariance under electric-magnetic duality rotations in Maxwell theory.
Theory of quantum fluctuations of optical dissipative structures and its application to the squeezing properties of bright cavity solitons
2007
We present a method for the study of quantum fluctuations of dissipative structures forming in nonlinear optical cavities, which we illustrate in the case of a degenerate, type I optical parametric oscillator. The method consists in (i) taking into account explicitly, through a collective variable description, the drift of the dissipative structure caused by the quantum noise, and (ii) expanding the remaining -internal- fluctuations in the biorthonormal basis associated to the linear operator governing the evolution of fluctuations in the linearized Langevin equations. We obtain general expressions for the squeezing and intensity fluctuations spectra. Then we theoretically study the squeezi…
Thermal and non-thermal signatures of the Unruh effect in Casimir-Polder forces
2014
We show that Casimir-Polder forces between two relativistic uniformly accelerated atoms exhibit a transition from the short distance thermal-like behavior predicted by the Unruh effect, to a long distance non-thermal behavior, associated with the breakdown of a local inertial description of the system. This phenomenology extends the Unruh thermal response detected by a single accelerated observer to an accelerated spatially extended system of two particles, and we identify the characteristic length scale for this crossover with the inverse of the proper acceleration of the two atoms. Our results are derived separating at fourth order in perturbation theory the contributions of vacuum fluctu…
Quadrature and polarization squeezing in a dispersive optical bistability model
2007
We theoretically study quadrature and polarization squeezing in dispersive optical bistability through a vectorial Kerr cavity model describing a nonlinear cavity filled with an isotropic chi(3) medium in which self-phase and cross-phase modulation, as well as four--wave mixing, occur. We derive expressions for the quantum fluctuations of the output field quadratures as a function of which we express the spectrum of fluctuations of the output field Stokes parameters. We pay particular attention to study how the bifurcations affecting the non-null linearly polarized output mode squeezes the orthogonally polarized vacuum mode, and show how this produces polarization squeezing.
Stabilization of quantum metastable states by dissipation
2015
Normally, quantum fluctuations enhance the escape from metastable states in the presence of dissipation. Here we show that dissipation can enhance the stability of a quantum metastable system, consisting of a particle moving in a strongly asymmetric double well potential, interacting with a thermal bath. We find that the escape time from the metastable state has a nonmonotonic behavior versus the system-bath coupling and the temperature, producing a stabilizing effect.
Reexamination of the Power Spectrum in De Sitter Inflation
2008
4 pages, 1 table.-- PACS nrs.: 98.80.Cq, 04.62.+v.-- PMID: 18999735 [PubMed].
Phase Transitions in Adsorbates with Internal Quantum States
1993
In principle, phase transitions in realistic systems at low temperatures should be studied including quantum effects. However, a full quantum treatment of all degrees of freedom in a simulation is restricted to small systems, if possible at all. In some cases, as is demonstrated for adsorbates, some degrees of freedom can still be modelled classically even at low temperatures, whereas only for the rest a quantum treatment is unavoidable. The path-integral Monte Carlo approach allows a systematic distinction between classical and quantum degrees of freedom in many-body systems. Using this technique in combination with finite-size methods, the complex phase diagram of a two-dimensional model …
Experiments on tunnelling in small normal-metal junctions influenced by dissipative environment: Critical comparison to the theories of quantum fluct…
1998
We report on experiments of charging in small normal metal tunnel junctions attached to well-defined resistive impedances. Our experiments are in very good agreement with the phase-correlation (PC) theory but not with the simplified voltage fluctuation (VF) model. The strong tunnelling corrections to the PC theory make the agreement with our results even better in the case of junctions with low resistance.