Search results for "Quantum System"

showing 10 items of 266 documents

Reinforcement learning approach to nonequilibrium quantum thermodynamics

2021

We use a reinforcement learning approach to reduce entropy production in a closed quantum system brought out of equilibrium. Our strategy makes use of an external control Hamiltonian and a policy gradient technique. Our approach bears no dependence on the quantitative tool chosen to characterize the degree of thermodynamic irreversibility induced by the dynamical process being considered, require little knowledge of the dynamics itself and does not need the tracking of the quantum state of the system during the evolution, thus embodying an experimentally non-demanding approach to the control of non-equilibrium quantum thermodynamics. We successfully apply our methods to the case of single- …

---Computer scienceFOS: Physical sciencesGeneral Physics and AstronomyNon-equilibrium thermodynamics01 natural sciencesSettore FIS/03 - Fisica Della Materia010305 fluids & plasmassymbols.namesakeQuantum stateSHORTCUTS0103 physical sciencesQuantum systemReinforcement learningStatistical physics010306 general physicsQuantum thermodynamicsCondensed Matter - Statistical MechanicsADIABATICITYQuantum PhysicsStatistical Mechanics (cond-mat.stat-mech)Entropy productionENTROPYsymbolsQuantum Physics (quant-ph)Hamiltonian (quantum mechanics)
researchProduct

Non-Markovian Dynamics of a Qubit Due to Single-Photon Scattering in a Waveguide

2018

We investigate the open dynamics of a qubit due to scattering of a single photon in an infinite or semi-infinite waveguide. Through an exact solution of the time-dependent multi-photon scattering problem, we find the qubit's dynamical map. Tools of open quantum systems theory allow us then to discuss the general features of this map, find the corresponding non-Linbladian master equation, and assess in a rigorous way its non-Markovian nature. The qubit dynamics has distinctive features that, in particular, do not occur in emission processes. Two fundamental sources of non-Markovianity are present: the finite width of the photon wavepacket and the time delay for propagation between the qubit …

---PhotonWave packetGeneral Physics and AstronomyFOS: Physical sciencesWaveguide QED; open quantum systems; non-Markovianity; quantum optics01 natural sciences010305 fluids & plasmasQuantum mechanics0103 physical sciencesMaster equationMesoscale and Nanoscale Physics (cond-mat.mes-hall)Waveguide (acoustics)quantum optics010306 general physicsQuantumPhysicsQuantum opticsopen quantum systemQuantum PhysicsCondensed Matter - Mesoscale and Nanoscale PhysicsScatteringnon-MarkovianityQubitWaveguide QEDQuantum Physics (quant-ph)Physics - OpticsOptics (physics.optics)
researchProduct

Quantum field inspired model of decision making: Asymptotic stabilization of belief state via interaction with surrounding mental environment

2018

This paper is devoted to justification of quantum-like models of the process of decision making based on the theory of open quantum systems, i.e. decision making is considered as decoherence. This process is modeled as interaction of a decision maker, Alice, with a mental (information) environment ${\cal R}$ surrounding her. Such an interaction generates "dissipation of uncertainty" from Alice's belief-state $\rho(t)$ into ${\cal R}$ and asymptotic stabilization of $\rho(t)$ to a steady belief-state. The latter is treated as the decision state. Mathematically the problem under study is about finding constraints on ${\cal R}$ guaranteeing such stabilization. We found a partial solution of th…

0301 basic medicinePersuasionClass (set theory)Psychology (all)Quantum decoherenceDissipation of uncertaintyProcess (engineering)Computer sciencemedia_common.quotation_subjectBF050105 experimental psychology03 medical and health sciences0501 psychology and cognitive sciencesQuantum field theoryQAQuantumGeneral Psychologymedia_commonQuantum-like modelVoters’ behaviorApplied Mathematics05 social sciencesState (functional analysis)16. Peace & justiceMental environmentMental (information) environment030104 developmental biologyQuantitative Biology - Neurons and CognitionOpen quantum systemFOS: Biological sciencesConsumers’ persuasionNeurons and Cognition (q-bio.NC)Decision makingMathematical economics
researchProduct

Algebras of unbounded operators and physical applications: a survey

2009

After a historical introduction on the standard algebraic approach to quantum mechanics of large systems we review the basic mathematical aspects of the algebras of unbounded operators. After that we discuss in some details their relevance in physical applications.

AlgebraAlgebras of unbounded operatorComputer scienceComputingMethodologies_SYMBOLICANDALGEBRAICMANIPULATIONAlgebraic dynamicFOS: Physical sciencesStatistical and Nonlinear PhysicsRelevance (information retrieval)Mathematical Physics (math-ph)Algebraic numberQuantum systems with infinite degrees of freedomSettore MAT/07 - Fisica MatematicaMathematical Physics
researchProduct

Quantum state engineering using one-dimensional discrete-time quantum walks

2017

Quantum state preparation in high-dimensional systems is an essential requirement for many quantum-technology applications. The engineering of an arbitrary quantum state is, however, typically strongly dependent on the experimental platform chosen for implementation, and a general framework is still missing. Here we show that coined quantum walks on a line, which represent a framework general enough to encompass a variety of different platforms, can be used for quantum state engineering of arbitrary superpositions of the walker's sites. We achieve this goal by identifying a set of conditions that fully characterize the reachable states in the space comprising walker and coin, and providing …

Angular momentumComputer scienceQuantum dynamicsQuantum technologiesFOS: Physical sciencesQuantum simulator02 engineering and technologyTopologySpace (mathematics)01 natural sciencesSettore FIS/03 - Fisica Della Materia010305 fluids & plasmasSet (abstract data type)Open quantum systemQuantum statequantum informationQuantum mechanics0103 physical sciencesExperimental platformquantum walksQuantum walk010306 general physicsPhysicsQuantum networkQuantum PhysicsHigh-dimensional systemsQuantum state preparationbusiness.industryOrbital angular momentumQuantum-state engineeringArbitrary superpositionOne-way quantum computer021001 nanoscience & nanotechnologyAtomic and Molecular Physics and OpticsArbitrary quantum stateQuantum technologyDiscrete time and continuous timeLine (geometry)PhotonicsQuantum Physics (quant-ph)0210 nano-technologybusiness
researchProduct

Output Field-Quadrature Measurements and Squeezing in Ultrastrong Cavity-QED

2015

We study the squeezing of output quadratures of an electro-magnetic field escaping from a resonator coupled to a general quantum system with arbitrary interaction strengths. The generalized theoretical analysis of output squeezing proposed here is valid for all the interaction regimes of cavity-quantum electrodynamics: from the weak to the strong, ultrastrong, and deep coupling regimes. For coupling rates comparable or larger then the cavity resonance frequency, the standard input–output theory for optical cavities fails to calculate the variance of output field-quadratures and predicts a non-negligible amount of output squeezing, even if the system is in its ground state. Here we show that…

Cavity resonanceSettore FIS/02 - Fisica Teorica Modelli E Metodi MatematiciFOS: Physical sciencesGeneral Physics and AstronomyVirtual particlePhysics::Optics02 engineering and technologyUltrastrong Cavity-QED01 natural sciencesResonator0103 physical sciencesquadrature measurements; squeezing; ultrastrong cavity-QEDQuantum system010306 general physicsQuantumPhysicsQuantum PhysicsSpace QuantizationQuadrature Measurement021001 nanoscience & nanotechnologyQuadrature (astronomy)Quantum SystemSqueezingQuantum electrodynamicsCoupling RegimeComputingMethodologies_DOCUMENTANDTEXTPROCESSINGNoiseQuantum Physics (quant-ph)0210 nano-technologyGround stateQuadrature Measurements; Squeezing; Ultrastrong Cavity-QED; Space Quantization; Coupling Regime; Quantum System; Noise
researchProduct

Robust entanglement preparation against noise by controlling spatial indistinguishability

2019

Initialization of composite quantum systems into highly entangled states is usually a must to allow their use for quantum technologies. However, the presence of unavoidable noise in the preparation stage makes the system state mixed, thus limiting the possibility of achieving this goal. Here we address this problem in the context of identical particle systems. We define the entanglement of formation for an arbitrary state of two identical qubits within the operational framework of spatially localized operations and classical communication (sLOCC). We then introduce an entropic measure of spatial indistinguishability under sLOCC as an information resource. We show that spatial indistinguisha…

Computer Networks and CommunicationsComputer scienceInitializationFOS: Physical sciencesContext (language use)Quantum entanglementNoise (electronics)Measure (mathematics)lcsh:QA75.5-76.95Settore FIS/03 - Fisica Della MateriaEntanglementComputer Science (miscellaneous)Statistical physicsQuantumQuantum PhysicsQuantum resourcesStatistical and Nonlinear PhysicsQuantum Physicslcsh:QC1-999Quantum technologyComputational Theory and MathematicsQubitOpen quantum systemlcsh:Electronic computers. Computer scienceQuantum Physics (quant-ph)lcsh:PhysicsQuantum indistinguishability
researchProduct

Quantifying, characterizing, and controlling information flow in ultracold atomic gases

2011

We study quantum information flow in a model comprising of an impurity qubit immersed in a Bose-Einstein condensed reservoir. We demonstrate how information flux between the qubit and the condensate can be manipulated by engineering the ultracold reservoir within experimentally realistic limits. We place a particular emphasis on non-Markovian dynamics, characterized by a reversed flow of information from the background gas to the qubit and identify a controllable crossover between Markovian and non-Markovian dynamics in the parameter space of the model.

Condensed Matter::Quantum GasesPhysicsQuantum PhysicsFlux qubitFOS: Physical sciencesQuantum simulator-One-way quantum computerAtomic and Molecular Physics and OpticsPhase qubitOpen quantum systemQuantum Gases (cond-mat.quant-gas)QubitBECs entanglement quantum information theory open quantum systemsStatistical physicsQuantum informationAtomic physicsCondensed Matter - Quantum GasesQuantum Physics (quant-ph)Trapped ion quantum computerPhysical Review A
researchProduct

The State of a Quantum System as a Subsystem of a Composite System

2020

The notion of state in quantum systems is analized, a non-probabilistic definition of state provided, the Zurek’s concept of envariance is mathematically formulated, and the characterization of a state through its properties is discussed.

Condensed Matter::Quantum GasesPhysicsQuantum mechanicsComposite numberQuantum systemState (functional analysis)QuantumCharacterization (materials science)
researchProduct

A new mathematical tool for an exact treatment of open quantum system dynamics

2005

A new method to obtain an operatorial exact solution of a wide class of Markovian master equations is presented. Its key point is the existence of a constant of motion partitioning the Hilbert space into finite-dimensional subspaces. The consequent possibility of representing the reduced density operator as a block diagonal matrix is shown. Each “block operator” evolves under the action of a non-unitary operator explicitly derived. Our mathematical approach is illustrated applying it to simple physical systems.

Constant of motionOperator (physics)Hilbert spaceBlock matrixCondensed Matter Physicssymbols.namesakeOpen quantum systemMultiplication operatorQuantum mechanicsequationsMaster equationsymbolsApplied mathematicsUnitary operatormathematical toolMathematics
researchProduct